
Proactive Botnet Countermeasures

An Offensive Approach

Felix LEDER, Tillmann WERNER, and Peter MARTINI

Institute of Computer Science IV, University of Bonn, Germany

Abstract. Botnets, consisting of thousands of interconnected, remote-controlled

computers, pose a big threat against the Internet. We have witnessed the

involvement of such malicious infrastructures in politically motivated attacks more

than once in recent years. Classical countermeasures are mostly reactive and

conducted as part of incident response actions. This is often not sufficient. We

argue that proactive measures are necessary to mitigate the botnet threat and

demonstrate techniques based on a formalized view of botnet infrastructures.

However, while being technically feasible, such actions raise legal and ethical

questions.

Keywords. Botnets, cyberwar, DDoS, defense strategies, countermeasures

Introduction

A botnet is an alliance of interconnected computers infected with malicious software (a

bot). Bots are commanded by an operator and can typically be advised to send Spam

mails, harvest information such as license keys or banking data on compromised

machines, or launch distributed denial-of-service (DDoS) attacks against arbitrary

targets. What's more, they often interfere with regular operation rendering infected

machines unstable or unusable. Thousands of such botnets exists, with each containing

thousands to millions of infected systems. The result are major direct and indirect

consequences for economy as well as for the political life [2].

In the past, the economic damage caused by botnets has been related to bandwidth

and CPU resources bound by Spam, DDoS attacks, and propagation of the malware.

More recent reports show that the damage is largely increasing due to the number of

stolen credit card information and banking credentials [17]. As more and more botnets

are incorporating functionality to collect this data, the damage will likely increase over

the next years. Besides this, distributed denial-of-service attacks originating from

botnets disrupt business at attacked sites. The measures for handling these attacks, like

forensic analysis, moving sites into different networks, data recovery etc., cost up to

several million US dollars per incident, let alone the collateral damage, which is hard to

measure [23].

Recent developments show that botnets are not only harmful to companies and

consumers but are also involved in politically motivated activity. Largely organized

DDoS attacks conducted by botnets in 2007 and 2008 cut off major Government sites

in Eastern Europe from the rest of the Internet. This drastically shows how the vast

number of remotely controlled machines has the potential to be used as a powerful

weapon in a cyberwar rather than just being an annoying phenomenon affecting only

some individuals. The spreading of botnets is conducted actively: Remote systems are

automatically attacked and exploited, mails are sent that trick the reader into opening

malicious programs or web pages which actively exploit the visiting computer. On the

contrary side, measures against botnets are very often passive and defensive. To date,

active measures are often taken in the context of responses to an ongoing incident only.

We have developed methodologies and prototypes for infiltrating botnets that can be

used to tackle them from the inside. Such offensive countermeasures can be used to

mitigate or extinguish existing botnets. We present our different approaches and

demonstrate how they can be applied to existing botnets in case studies.

The remainder of this paper is organized as follows: The next section presents a

brief overview of common botnet topologies. Section 2 reviews classical

countermeasures. Proactive approaches will be explained in section 3. In section 4

some case studies will be presented. We will discuss legal and ethical aspects in section

5. Section 6 concludes the paper.

1. Botnet Topologies

The two things needed to set up a botnet are an addressing mechanism to identify and

reach a command-and-control instance, and a communication protocol to distribute

commands to the bots. The latter is often referred to as an overlay network that forms

the botnet's communication channel. Different botnets are using different strategies

here which is reflected in the topology used: We differentiate between centralized,

decentralized and locomotive botnets. The kind of topology is extremely important for

the selection of containment strategies.

Centralized topologies as depicted in figure 1 are the classical botnet structures.

The box in the middle denotes the central C&C server with seven connected bots and a

commander (the star symbol). Examples are the IRC-based Agobot, Rbot, and Sdbot

families [1]. A static command-and control server is contacted by bots via its IP

address (which generally requires resolving a DNS name first). Centralized botnet

infrastructures often rely on existing network protocols on top of IP that implement

standard client-server architectures, like IRC or HTTP. For this reason, they are

obviously completely extinguishable by taking down their C&C server.

Figure 1. A centralized botnet with seven bots and a commander

The communication in a centralized botnet can either follow a push strategy (as in

IRC-based communication) where each bot stays connected to a server which then

distributes commands simultaneously to all hosts in a broadcast-like manner. Or the

server has to be polled by the clients on a regular basis (as in HTTP-based botnets). In

the latter scenario, the general method is to set up and update a central resource like a

web page which can be browsed by the bots. Both approaches have their advantages,

e.g., IRC botnets can be built upon an existing IRC infrastructure with multiple self-

synchronizing servers, providing load-balancing and reliability. HTTP, on the other

hand, is more stealthy and better suited for bypassing security gateways and hiding

amongst regular traffic patterns.

Figure 2. A decentralized botnet with three bots acting as C&C servers

In a decentralized topology, no single command-and-control component exists.

Instead, each bot seeks for a commander using some upstream query mechanism. A

schematic structure is depicted in figure 2: Each bot knows some neighbors and

receives and forwards commands. Three bots act as C&C servers and are advised to

distribute commands in the network. Well-known representatives are the Storm Worm

[3], or Conficker [5]. The two-tiered approach allows the botnet owner to easily change

the C&C backbone, making it much harder to take it down. As in centralized botnets,

commands can be pushed to bots, which requires that they can be reached instantly, or

infected machines pull commands from their individual C&C server (the latter being

the most common case). Bots can be implemented to automatically re-establish a C&C

session on disconnects. Most decentralized botnets seen so far were based on peer-to-

peer (P2P) technology that allows for both information queries as well as host

addressing, the two features needed for the communication between a bot and a

command server. In a common P2P botnet some peers are controlled by the botnet

owner and used to issue and propagate information (i.e. commands) to other peers.

Taking advantage of the flexible self-organizing network infrastructure, these nodes are

easily replaceable with other hosts.

The decentralization can be taken even further by designing fluxy registration of

C&C servers at the query layer (i.e., a pool of command servers returned to queries

which is kept highly dynamic through automated subscriptions). This situation is

visualized in figure 3 on the next page: The shaded structures are past C&C servers that

have been replaced by other ones automatically. Bots recognize the change and contact

the new server instead. In most cases these C&C servers are also infected hosts,

temporarily playing the role of a commander.

Another way would be to change the query interface, e.g., by choosing time-

dependent domain names. We call such botnets locomotive because of their constantly

moving structure. One example is the HTTP-driven Torpig botnet [4]. Conficker, in

addition to its P2P structure, also makes use of constantly changing DNS names [5-7].

There is no standard implementation of such botnets. In fact, the overall structure is

often even more complex than outlined here.

Figure 3. A locomotive botnet with C&C servers that move over time

In reality the boundaries between centralized, decentralized, and locomotive

botnets are blurred: A similar strategy was already commonly implemented in classical

botnet infrastructures where a DNS entry was used to transparently switch between

servers. However, this does not really provide more security as it only displaces the

single point against which takeover attempts could be mounted.

2. Classical Countermeasures

Traditional ways of counter-measuring botnets is generally restricted to spotting a

central weak point in their infrastructure that can be manipulated, disrupted or blocked.

The most common way is to cooperate with an Internet service provider to gain access

and shut down the central component, resulting in a loss of control for the botnet

owner: The botnet cannot be commanded anymore. Such actions are often performed

during emergency response to an ongoing incident like a DDoS attack. While this

course of action has proven effective (e.g., shutting down an IRC-based C&C server

prevents bots from receiving commands, and machines already involved in an attack

are rebooted sooner or later), it requires access to the machine, and, most notably, the

willingness to cooperate at the responsible institution. Classical countermeasures

against botnets have three different points to attack:

1. The command and control (C&C) server

2. The botnet traffic

3. The infected computers

 We will explain the countermeasures with their chances and difficulties in the

following. Our goal is to show their differences and why we need more discussion

about offensives approaches against botnets.

2.1. Taking Down the C&C Server

The most promising approach is to remove the base of a botnet, which is the C&C

server. Pulling the plug of the command-and-control host allows to extinguish the

whole botnet in one go. Unfortunately this is only possible if all of the following

conditions are met:

1. The botnet uses a centralized structure.

2. The location of the C&C server is known.

3. The provider cooperates.

 If one of those conditions is not met, removing the C&C server is impossible.

More and more botnets are not solely relying on a centralized structure anymore.

Instead they use peer-to-peer (P2P) functionality or multi-proxy structures to hide their

central origin. It is often hardly possible to find the location of the C&C server of such

botnets. If multiple, fixed servers are used, all of them must be removed. When the

location is known, the provider hosting the C&C server must be cooperative. Very

often, botnets are controlled from locations hosted by so-called bullet-proof hosters,

that are not responsive to abuse requests or, even worse, move the server to affiliated

partners as soon as the pressure to take the host down rises. Those providers are found

in almost all countries, Germany and the U.S. being amongst the most prominent ones

according to our observations. Law enforcement is often one step behind when the

hosted services are suddenly switched to another provider. In the lucky situation where

the location of a centralized botnet to be within a cooperative provider's network, the

provider must still be notified and has to agree to all actions. But different

organizations that track attacks in the Internet receive so many hints about possible

C&C servers that they cannot handle, follow, and verify actions against each C&C

individually. The number of conditions is part of the problem that such a large number

of botnets exist, and it is still increasing.

Taking the C&C servers down is not always similar to removing the root of the

botnet. Infected machines can also contain functionality to spread autonomously, as

well as other fall-back logic that gets executed in case the C&C cannot be reached

anymore. This creates additional traffic and can lead to more infected machines.

Some cases are known where a botnet takeover was performed with the goal to

issue commands that make the bots stop an attack or deinstall themselves. While this

approach is more delicate with respect to responsibility for effects caused on infected

machines, it is extremely successful at the same time. Attacks are stopped immediately

and the botnet is eventually shut down conclusively without the chance to be brought

back up by the owner. However, the success rate depends on whether cooperation with

the responsible infrastructure providers is possible or not.

2.2. Sinkholing Malicious Traffic

Sinkholing is the term for redirecting network traffic or connection attempts to a

special purpose server. If the C&C server cannot be taken down, another option is to

redirect malicious traffic to sinkholes, a strategy that found its way into recent

mitigation techniques, either locally [24] or globally [14]. The sinkholes record

malicious traffic, analyze it and drop it afterwards such that it cannot reach the original

target it is meant for. One example of sinkholing is DDoS null-routing. In case traffic

belongs to an ongoing DDoS attempt is observed it is dropped and sometimes counted

for later analysis. DDoS null-routing at border-routers is a promising approach to

mitigate DDoS attacks but comes with the challenges of reliable identification of attack

related traffic and clean dissection of high-bandwidth data streams at an early stage.

This is generally only possible at ISP level. A collaborative worldwide initiative

between providers would be another option, but is obviously beyond all question.

2.3. Cleaning Infected Systems

The most sustainable countermeasure against botnets is probably to clean all

infected systems and remove the bots installed. While this removes the full power of a

botnet, it is also the most complex and most difficult to manage countermeasure. To

date, the owners or administrators are responsible for keeping their systems clean from

infections. Only recommendations and technical advice can be given to them. As most

users are not even aware of their machine being infected, let alone the ability to remove

a malware, a global cleaning is impossible. The huge media campaigns about

Conficker and the number of still infected systems show that even with intense

warnings a large-scale client-side cleanup performed by the individual owners is not

feasible.

 The standard recommendation to keep systems safe from botnets is to use

firewalls and up-to-date anti-virus (AV) software. Firewalls are a preventive feature

that in many cases only block attacks from the outside. The increasing number of drive-

by-exploits, using bugs in the user's browser to infect a system, and the mobility of

malicious data on laptops or USB-sticks opens up a range of new infection vectors that

bypass firewalls. This development has been very obvious with Conficker infections

[5,14]. Anti-virus software is a reactive feature. Before it is able to detect anything,

signatures must be available and the malicious data has to be on the targeted computer.

If signatures do not yet exist, the systems cannot be defended. Tests of different AV

engines have shown that some detection rates are as low as 80% [18]. Once a system is

infected, the bot can spread and perform malicious actions until AV signatures are

available. AV engines are often outdated and not updated on a regular basis.

Furthermore, different bots disable AV scanners or hide in ways that cannot be

detected by regular scanners [19].

 All in all, a global cleanup, as it would be required in order to effectively take

power from botnets, seems to be infeasible when approached at an organizational level

only.

2.4. Conclusion on Classical Strategies

The observations discussed in this section demonstrate that to date the success rate

of botnet countermeasures depends mainly on organizational and political general

conditions. Given that setting up cooperation or diplomatic agreements takes time we

come to the conclusion that establishing an appropriate relationship that legitimates

cooperation for collaborated actions is not suited as an ad-hoc scheme for fighting

ongoing attacks.

The situation gets worse considering that modern botnet infrastructures do not fall

under responsibility of one entity. Instead, distributed peer-to-peer networks operate

globally, thus shutting down local parts (often no more than single machines) would be

no effective solution. All in all, countermeasures that require close cooperation are

today generally infeasible for both technical and political reasons.

There have been discussions where experts stated that shutting down C&C servers

has become useless as they would be replaced with new, better protected systems

almost immediately. This accelerated arm's race would eventually lead to sophisticated

botnet technology sooner than without mitigation. We think that this view is by no

means bearable: It ignores the fact that botnets cause harm against other organizations.

A hands-off approach leaves potential target sites alone with the existing threat. In the

end, restricting mitigation techniques to eluding from or block ongoing attacks is an

admission of powerlessness. We propose a combination of classical techniques with

additional proactive strategies which we discuss in the following section.

3. Proactive Measures

The classical countermeasures described in the previous section are very good steps to

mitigate the power of botnets, but recent developments show that they are only

applicable to a certain extent: Newer botnets use more sophisticated obfuscation

techniques that deny the use of classical approaches due to the difficulties explained

above. While the newer structures introduced by recent botnets complicate the

applicability of some strategies, they are open to more offensive tactics. This section

explains general principles that can be exploited to create offensive countermeasures

against botnets. We focus on the technical possibilities.

Exploring the structure of a botnet is often the first step for finding starting points

for possible countermeasures. An immanent property of all botnets is that they have to

allow new machines, which run on untrusted platforms, to join the network [25]. This

is an important aspect for countermeasure approaches: We are not restricted to acting

from the outside – we can join the network, perform investigations while being part of

the infrastructure ourselves and might even be able to contain the botnet or take it down

from the inside. Furthermore, bots are spreading to infect more systems and make the

network grow. Malware samples, which are not hard to obtain, can be analyzed (i.e.,

reverse-engineered) to learn about their internals. With the knowledge about a bot's

functionality, it is often possible to create a fake bot and link it into the botnet to

monitor or perturb the internal communication. This procedure is always possible, as

all information about the initial bootstrapping has to be included in the malware binary

and can thus be cloned. Many approaches presented in this section rely on the

infiltration of botnets, a technique that was discussed in different flavors in case studies

before [3-5,9].

 Offensive strategies can be split into three different categories: Mitigation,

manipulation, and exploitation. The extent to which corresponding actions are possible

depends largely on the topology used by botnet. Especially, decentralized and

locomotive topologies offer multiple chances for countermeasures.

 Strategies for mitigation are offensive, technical means that slow botnets down,

by consuming resources for instance. Examples can be temporary DoS attempts against

C&C servers, trapping and holding connections from infected machines, or blocking of

malicious domains. Manipulation strategies make use of the command layer. The

knowledge about command protocols is essential to manipulate and inject commands.

The required knowledge about the protocols does also include cryptography used. Even

though cryptography may completely deny the inspection of botnet data exchange, our

Waledac case study shows how this can be achieved even when cryptographic methods

like RSA and AES are used [10,11]. Possible manipulation can be the alteration or

removal of DDoS or Spam commands as well as commands to download and execute

programs, which allows a remote cleanup of infected machine. Less invasive options

include dropping collected personal data, like credit card or banking details, replacing

them by fake information, or issuing commands to make bots stop the collection.

Lastly, exploitation is a special strategy that makes use of bugs found in bots. Like

bugs in other products, these can be used to perform actions on the infected machines.

Even though, this category is the most powerful, it is the one with the highest risk

involved because exploits can easily crash and damage systems if not designed

carefully.

 Not every strategy can be applied to every botnet. Some of them depend largely

on the botnet's topology. Especially non-centralized botnets offer a range of

possibilities. We will explain different technical possibilities in the following.

3.1. The Addressing Layer

In this paragraph we discuss strategies targeting the routing and the addressing layer of

a botnet infrastructure. It is important to understand that the routing mechanism used in

a botnet is needed for addressing hosts, or C&C servers respectively. The command

layer, in contrary, works on top of the addressing scheme to provide a communication

channel to the interconnected machines.

The most common way for a bot to address a central C&C server is a DNS name

that resolves to an IP address – the addressing takes place in two phases. Each phase

makes a potential starting point for intervention. For instance, DNS requests are

generally handled by a local DNS resolver which, in turn, forwards the request to an

authoritative DNS server. This local resolver is controlled by the site administrator and

can easily be instructed to return a specially crafted response to specific queries. The

same holds for IP routing: Local routers can be equipped with routing table entries to

sinkhole certain addresses or redirect them to different hosts. As a consequence, both

steps result in bots in the local network being unable to contact the original C&C server

and might even be controlled by a pseudo-server. An intervention as described above

always requires a man-in-the-middle position. However, it is not always necessary to

change the configuration of inline devices. Approaches exist that demonstrate the live

modification of relevant network traffic [11].

Modern botnets use more complex addressing schemes which are also run as an

overlay network on top of the IP-based Internet. Examples are peer-to-peer networks

like Storm or Waledac. They provide their own addressing scheme with the goal to

increase flexibility and decentralization. Both examples will be discussed in more

detail in section 4. Again, a strategic position is necessary to infiltrate the addressing

layer of these botnets. A general approach is to inject a carefully monitored and

controlled node, e.g., a clone of an original peer.

Even when C&C servers cannot be physically accessed, they must be reachable

over the Internet because bots have to contact them to receive commands. This fact can

be used to mitigate the botnet by creating a DoS situation at the server. A controlled

allied DDoS from would make the server unreachable. Additionally, botnets often rely

on technology that is prone to specific attacks by design, like the Transmission Control

Protocol (TCP). For example, a C&C server's TCP backlog queue can be filled up with

connection attempts to trigger denial-of-service conditions, turning the botnet's

weapons against itself. This is especially useful for most HTTP based bots where new

connections are established for every command request. We have evaluated different

service and operating system combinations and found a temporary TCP DoS attack to

be easily conductible with only very few resources. During our research we have been

able to reliably decrease the probability to establish connections to TCP servers to less

than 5% with only one offensive machine. A single host can keep the victim service's

backlog queue filled, blocking all further connection attempts and thus hindering bots

from requesting commands. Such an action can be crafted in a way that it is not

possible to tell apart the connection attempts from the ones issued by bots. As a result

any counter-action intending to block the requests would also block all “legitimate”

bots. Our tests showed that one single machine can keep a TCP service permanently

unresponsive just by initiating and completing 3-way handshakes and keeping

connections up as long as possible. Such an attack results in less bots being able to

contact the C&C server and participate in malicious activity.

Flooding the link or network where the C&C server resides with packets that

consume all available bandwidth is another similar attack. It obviously requires more

resources, though, as more packets must be sent. A reflection attack can be used to

amplify the amount of traffic sent. However, that would incorporate third-party

resources and probably permission by the affected site owners which is apparently not

granted.

3.2. The Command Layer

Attacking the command layer of a botnet requires knowledge of the protocol used. An

easy example would be an IRC-based network where a remove command instructs bots

to uninstall themselves from infected systems. Many classical bots implement such an

instruction [1], and it was shown before that it can be used to disintegrate a botnet [24].

The injection of a command requires either control over the C&C server, or bots have

to be redirected to a different server by performing an attack against the addressing

layer (as described in the previous paragraph), which then distributes the removal

instruction. Other bots do not have an uninstall option but offer an update functionality

that can be used to replace the malware with a innocuous binary or a program that

scans for a bot and eventually removes it (similar to a virus scanner).

Figure 4. Interception and modification of commands from a C&C server to a bot

In combination with infiltrating the addressing layer other approaches become

feasible: Original commands can be monitored, intercepted and modified. This

situation is depicted in figure 4 where a fake bot positioned in between the path to other

bots and the C&C server intercepts the communication and replaces commands with

other information. A protocol could implement checks to render such manipulations

impossible. However, such measures were not seen in botnets so far.

In general, to actually conduct a botnet infiltration attack, a combination of actions

on both the addressing and the command layer is necessary. Redirecting bots to a

controlled server either for sinkholing or to command them to perform a self-removal is

probably one of the most effective countermeasures on the infrastructure level.

� �

3.3. Exploitation

Exploit based strategies make use of the fact, that even botnets contain bugs and

programming flaws that result in vulnerabilities which can be exploited to gain control

either over a central component (like a C&C server) or over bot-infected machines.

Such vulnerabilities may range from misconfiguration, like e.g., an insecure IRC server

setup that allows other users to control a channel, to security holes in software, like

remotely-exploitable buffer overflows.

 Mitigation and manipulation strategies are mostly not invasive for the infected

machines themselves. An exception are commands that download and execute

programs. The exploitation of bugs is even more invasive than executing regular

programs because exploit code is often required to be specifically tailored to the

targeted host operating system and language. Frameworks like metasploit [21] help in

developing generic exploit code. All in all, there still is a higher risk that remote

systems are crashed this way. This has to be taken into consideration especially in

scenarios where infected systems control critical infrastructures.

 Before exploiting the bugs, infected systems have to be found. For decentralized

topologies they can be enumerated by counting connection attempts to injected bots. In

locomotive topologies this information can be extracted from sinkhole data. Other

options are the use of honeypots, IDS signatures or scanners that scan network ranges

for infected machines. In very rare cases lists of other bots are available from central

IRC C&C servers.

Exploitable vulnerabilities in bots have been found before [13]. Many Rbot and

Sdbot variants share the same code base that contains vulnerable functions like this. A

potential way to take down botnets would be to identify infected machines, exploit a

vulnerability in the bot, and inject and execute code that shuts the malware down.

Vulnerable code can still be found in recent malware. Conficker.B uses the MD6

cryptographic hash function for its digital signatures. The MD6 algorithm was found to

contain a buffer overrun vulnerability and fixed in an update release that was

immediately incorporated in Conficker.C [7]. While this particular vulnerability in

Conficker.B was not exploitable, it demonstrates that even sophisticated malware is not

immune to critical security holes. Actively attacking bot-infected machines raises lots

of ethical and legal questions. We provide a summary of the most important of these

aspects in section 5.

3.4. Conclusion on Offensive Strategies

The number of technically feasible strategies shows that there are plenty of possibilities

to pro-actively act against botnets before they cause any harm. The use cases presented

in the following section show that the offensive strategies are not purely theoretical but

based on our practical research. While technically possible, the ethical and legal

problems those strategies bring up have to be taken in consideration in practice. Before

starting to use (especially the invasive opportunities), an extensive discussion about

those topics and authorities is required. The last sections of this paper are to be seen as

a step towards this.

 A general challenge about many offensive approaches is that they have to be

performed stealthy. Otherwise mitigation attempts can be countered by the botnet

commanders. Manipulation possibilities can quickly be outdated with small protocol

changes or the use of digital signatures. Furthermore, exploitable bugs can usually be

fixed in a short time. In case a botnet is to be shut down, this must be performed

globally and quickly to not leave any time to the botnet commanders for

countermeasures themselves.

Experts consider prosecution of botnet constructors unlikely to have a strong

impact on the global threat [20]. Instead, botnets must be fought on a technical level.

Proactive measures must be taken as a joint effort of international security teams with

local authority. This approach has proven successful and should be followed more

consequently in the future [22].

4. Case Studies

This section contains some brief case studies where we present our research on the

feasibility and effectiveness of proactive countermeasures on real botnets. We focused

on more sophisticated bots, rather than standard IRC or HTTP based networks, as these

are far more challenging and our methods must work for them as well. However, we

cannot discuss all the technical details for lack of space and refer to the references for

more information.

4.1. Kraken

If a botnet's communication protocol is known and messages can be forged, it is

possible to inject commands that will be reacted upon by the bots. In case of the

Kraken botnet commands are requested from a server after selecting and resolving an

entry from a list of domain names. By registering some of those domains and accepting

connections from Kraken machines it is possible to send arbitrary commands to the

bots. In [15], we have described the encryption used in the protocol. [16] have

demonstrated how a remote cleanup can be conducted by issuing an update command

that instructs bots to start a removal tool.

4.2. Storm Worm

The Storm Worm (also known as just Storm) is probably one of the most known bots

worldwide [3,9]. While other specimens that use P2P technology were seen before,

Storm was the first malware that used it in a way that the botnet could exist for more

than three years. Storm is interesting for different reasons: First, spreading was almost

only based on social engineering through sending Spam – people even started talking

about Spam campaigns as the topics were linked to current news or dates like the Iran

War or Christmas.

Storm uses an encrypted version of the Edonkey peer-to-peer protocol. We have

been able to extract the 40-bytes XOR key through reverse-engineering of a storm

sample and have built our own Storm P2P client to be able to infiltrate the network [9].

In P2P botnets like Storm, all nodes take part in the infrastructure and perform routing

or searches for other bots. Being able to communicate with other nodes, the Storm

network routing infrastructure can be infiltrated and disrupted [3,8,9]. However, we

have found a less complex yet more powerful approach [9]: We were able to extract

Storm's algorithm responsible for the privilege calculation and to displace the original

commanders. This makes it possible to issue own commands to all bots in the network.

Storm's command set has been reverse-engineered by us. Consequently, we would

have been able to instruct Storm nodes to download and run an arbitrary binary, e.g., to

remove the bot from the system. All in all, a complete take down was possible by

combining attacks on the infrastructure and the command layer while exploiting a

design flaw in the P2P protocol. Today, only an insignificant number of Storm

machines is still existing.

4.3. Waledac

Waledac is another P2P bot that tunnels all communication through HTTP.

Additionally, each message is encrypted using a hybrid encryption scheme that applies

the AES and RSA implementations of OpenSSL. To be able to spy on the traffic, we

conducted a man-in-the-middle attack and intercepted the RSA key exchange. One

important observation was that the AES key used for further encryption was static

rather than dynamically chosen, a design flaw that enables us to also decrypt Waledac

messages offline, without the need for a man-in-the-middle proxy.

Being able to snoop on the traffic, we were able to manipulate the communication

between two nodes and even developed a tool to construct and inject valid messages

ourselves. A takeover strategy based on these findings would be to announce oneself to

other Waledac hosts as a proxy node to achieve a prominent position and then drop

important commands like DDoS instructions. We could also modify update commands

to make bots download and execute our own binary instead of the one provided by the

commander.

4.4. Conficker

The first variants of the Conficker worm implement a C&C query algorithm similar to

the one used by Kraken. Every day, a list of domain names are generated. Some

randomly selected names are then resolved and the corresponding hosts are contacted.

The Conficker Working Group [15] has organized a collaborative effort for pre-

registering and sinkholing these domains to make them unavailable to the Conficker

constructors. Furthermore, vulnerabilities exist in Conficker's code that would

theoretically allow for exploitation and execution of arbitrary commands on infected

machines. We have developed a network scanner for reliable identification of

Conficker hosts [5]. These techniques can be combined in a proactive defense strategy

to take down the botnet.

5. Legal and Ethical Aspects

The technical feasibility of the presented countermeasures does not justify their use in

practice [26, 30]. The conduction of these countermeasures may interfere with law or

current ethical beliefs depending on their invasiveness and impact on third-parties. On

the one hand, many people fear the debates and political consequences, and therefore

the general tendency is to stick to conservative approaches [29]. On the other hand, the

enormous damage caused by botnets cannot be simply overlooked [23]. Since classical

means have not proven to keep up with the increasing threat, discussions have to be

initiated about more active strategies. The recently published “Cyberspace Policy

Reveiw” [26] by the White House discusses a strategy to make the Internet more secure

from an general viewpoint and identifies privacy and the question of responsibility as

important challenges. In fact, this is not really surprising as both of these topics have a

strong judicial impact.

This section aims at bringing up the most important consequences of traffic

manipulation and countermeasures against control servers. Further, we briefly discuss

some ethical, legal, and liability aspects of remote bot disinfections.

5.1. Targeting Control Servers

Most countermeasures that target C&C servers only can be regarded as non-critical.

We assume that the commanders of botnets are cyber criminals. Taking down their

C&C server literally disarms them. The same holds for regular DoS attacks on those

servers. However, DDoS attacks that use lots of bandwidth and processing power, yield

to a trade-off between the large amount of resources consumed by the botnet and

resources for DDoS countermeasures.

5.2. Targeting Traffic

Traffic manipulation is generally considered to be ethically and legally feasible as long

as affected parties agree to it. Such alterations might be offered as a service to prevent

DDoS attack, for example. Many users don't know about the threat and therefore don't

take steps towards such agreements. Inspecting their traffic and modifying it is a legal

problem in many countries, even though more and more countries, like the U.K [31].,

pass laws that allow traffic inspection from certain official organizations. Traffic

inspection and traffic modification at ISP level would allow to remove Spam and

DDoS commands as they are passed in known botnet traffic.

Such actions can also be seen as an indirect protection of the ISP's infrastructure.

However, on the one hand, such courses of action raise ethical problems as users may

interpret them as a kind of censorship [32]. On the other hand, many users don't know

about their infections and would really appreciate if their systems are not misused. A

default policy included in contracts to allow ISP to perform those actions in

conjunction with a possibility to withdraw would be a solution that is actually already

evaluated at several sites.

5.3. Targeting Infected Systems

The most controversial discussion takes place about more invasive strategies, like a

remote removal of bots from infected computers. This raises different issues:

1. Ethical: This bypasses the responsibility of users to keep their systems clean.

2. Legal: In most countries it is illegal to run software without the system

owner's permission.

3. Liability: Who takes the consequences if the cleanup actions fail or cause

problems?

A remote cleanup, in most cases, requires running a removal tool on the infected

computer, which has been shown to be technically feasible for a range of botnets. This

kind of cleanup has to be performed fast because otherwise new commands to kill the

removal tools can be issued by the botnet commanders. Thus, asking all users is not

feasible.

Up to now, users are responsible for their own systems. Remote cleanup with

automated removal tools bypasses the user, his autonomy, and his responsibility. While

some users interpret this as an intrusion into their privacy, a wide range of users would

be very grateful for this kind of support to keep their systems clean. All in all, it keeps

them a little safer from getting their banking or credit card details stolen. The typical

use of AV software as an install-and-forget means supports this view.

Downloading and running software on a remote computer without the owner's

permission is illegal in many countries because it is seen as an act of hacking into the

system [27, 28]. However, some countries, like the Netherlands, require criminally

motivated deeds for the applications of those laws. Since it is a general belief that

botnets are run by criminals and cyber terrorists, the disinfection of hosts clearly states

good will [28].

This may lead to the conclusion to run proactive strategies only for systems in

specific countries or organizations that agreed on such actions. This selective approach

is not very effective and yields at maximum in a mitigation but not removal of the

considered botnet. Technically it is not always feasible to identify hosts from specific

countries or organizations in the overlay network of the botnet. The cleanup of only

selected systems rises the problem that the left-over partition may react, adjust to the

new situation, and conduct a counter attack. Similarly, concurrent criminal

organizations may observe those actions and may use the information to issue their

own “updates”, which simply replaces the bot.

Cyber criminals act globally. Thus, countermeasure can only be effective when

performed on a global level or at least in large parts of the Internet. A global take down

would be the ideal situation. However, a global disinfection rises political questions

because most countries would not agree on another country's forces to remotely run

software on their systems. This holds especially for infected governmental systems.

The foundation of a global organization with legitimation to perform those actions

might be a solution. The discussions and consents about such an initiative have to take

place on a political level.

Even the best software contains bugs. Invasive countermeasures, like removal

tools, can lead to instability of the disinfected system, even with a low probability. This

risk increases when bugs in a malware are exploited. In the unlikely case that this

happens, the liability is an important question. Who takes responsibility for this

happening?

Closely linked to the liability question is the ethical question on the consequences

of such actions on medical devices or critical infrastructures, for instance. However, the

probability of malicious software causing harm is much more likely. During Conficker

outbreaks in hospitals, medical devices were infected and stopped working properly. In

the end, it is also a question of responsibility to leave no stone unturned – and that

might even include a proactive botnet takedown to prevent further harm.

6. Conclusion

While technically possible, we argue that pro-actively fighting botnets requires

immediate political and international consensus. It is a matter of the impact whether

people would agree to offensive approaches or not. The affected systems' criticality

have to be balanced against potential damage caused by countermeasures. This is,

however, also the case for classical mitigation techniques. The portfolio of measures

demonstrated in this paper range from more passive ones, like sinkholing, to offensive

ones, like exploiting bot hosts to take them over and clean them. We believe that a

framework for a staged approach that combines both defensive and offensive

techniques should be prepared as part of an emergency response toolkit.

We have seen that cooperation is one of the most important aspects when it comes

to successful and sustainable botnet mitigation. This holds for the technical and the

political level likewise. Trusted forums must be strengthened and extended to be

capable of reacting to botnet incidents effective and immediately. A laissez-faire policy

does not lead anywhere.

References

[1] E. Stinson, and J.C. Mitchell, Characterizing Bots' Remote Control Behavior, Springer Verlag, Proc. of

the 4th intl. conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 2007

[2] S.W. Korns, J.E. Kastenberg, Georgia’s Cyber Left Hook, 2009

[3] T. Holz et al., Measurements and Mitigation of Peer-to-Peer-based Botnets:

A Case Study on Storm Worm, Proc. of the 1st Usenix LEET’08

[4] B. Stone-Gross et al., Your Botnet is My Botnet: Analysis of a Botnet Takeover, UCSB Tech. Rep., 2009

[5] F. Leder, T. Werner, Know Your Enemy: Containing Conficker, Honeynet Project, 2009

[6] P. Porras, H. Saidi, and V. Yegneswaran, An analysis of Conficker's Logic and Rendezvous Points, SRI

International Technical Report, 2009

[7] P. Porras, H. Saidi, and V. Yegneswaran, Conficker C Analysis, SRI International Technical Report, 2009

[8] C. Kreibich et al., On the Spam Campaign Trail, First USENIX LEET’08

[9] G. Wicherski et al., Stormfucker: Owning the Storm Botnet, 25th Chaos Communication Congress, 2008

[10] F. Leder, Waledac is wishing merry christmas, http://www.honeynet.org/node/325, 2009

[11] F. Leder, Speaking Waledac, https://www.honeynet.org/node/348, 2009

[12] Team Cymru, A Taste of HTTP Botnets, 2008

[13] Sasser Ftpd Exploit, http://www.securiteam.com/exploits/5AP0J0ACUM.html

[14] The Conficker Working Group, http://confickerworkinggroup.com

[15] F. Leder, P. Martini, NGBPA Next Generation BotNet Protocol Analysis, IFIP SEC 2009

[16] P. Amini, C. Pierce, Kraken Botnet Infiltration, http://dvlabs.tippingpoint.com (2009)

[17] Symantec, Symantec Global Internet Security Threat Report 2008, 2009

[18] Malware Research Group, http://malwareresearchgroup.com (2009)

[19] J. Rutkowska, Subverting the Vista Kernel for Fun and Profit, Blackhat Briefings 2006

[20] R. Lemos, “Arrests unlikely to impact bot net threat, say experts”,

http://www.securityfocus.com/news/11344 (2009)

[21] The Metasploit Project, http://metasploit.com

[22] J. Stewart, Interview: “Researcher argues for CERTs with teeth”,

http://www.securityfocus.com/brief/950

[23] Ponemon Institute, 2008 Annual Study: Cost of a Data Breach, 2009

[24] V, Thomas, N. Jyoti, “Bot Countermeasures”, Journal in Computer Virology, 2007

[25] R Vogt, J Aycock, M Jacobson, “Army of botnets”, ISOC Symposium on Network and Distributed

Systems Security, 2007

[26] Panel: Ethics in Botnet Research, LEET 09, Boston, April 21, 2009

[27] T. O'Connor, Cybercrime, Cyberlaw, and Cybercriminals,

http://www.apsu.edu/oconnort/3100/3100lect02b.htm , Dec. 2007

[28] B. Koops, "Cybercrime Legislation in the Netherlands", Cybercrime and Security, Vol. 2005/4, D.Ferry

[29] D. Fisher, Botnet disruption raises ethical concerns among researchers,

http://searchsecurity.techtarget.com/news/article/0,289142,sid14_gci1311711,00.html, Apr. 2008

[30] vnunet, Security experts blast BBC over botnet stunt,

http://www.vnunet.com/vnunet/news/2238682/experts-blast-bbc-botnet-stunt, Mar. 2009

[31] EPIC, European Commission Seeks to Protect Internet Privacy, Apr. 2009

[32] CCC, Internet censorship: blocking objectionable content only protects felons,

http://www.ccc.de/press/releases/2009/20090212/?language=en Feb. 2009

