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Abstract. Computer Network Defence is concerned with the active protection of 

information technology infrastructure against malicious and accidental incidents. 

Given the growing complexity of IT systems and the speed at which automated 

attacks can be launched, implementing timely and efficient network incident 

mitigating actions, whether proactive or reactive, is a great challenge. We refer to 

the automation of action selection and implementation in this domain as 

Autonomic Computer Network Defence. In this work, we suggest that Autonomic 

Computer Network Defence can be achieved using Reinforcement Learning and 

dynamic risk assessment to learn the optimal action sequence, or policy, to recover 

from given computer network risk situations. Such a policy could then be used by 

commercial network management and security products to implement selected 

mitigating actions automatically, as risk states are sensed.  

Keywords.  Autonomic Computer Network Defence, Reinforcement Learning, 

risk, simulation.  

Introduction 

Autonomic Computer Network Defence (CND) aims to provide a self-protection 

capability of information technology (IT) networks in order to limit the risk caused by 

malicious and accidental events. This requires an automated controller with a policy, 

which selects the most appropriate action in any undesired network state. Due to the 

complexity and constant evolution of the CND environment, a-priori design for an 

automated controller is not effective. A solution for generating and continuously 

improving CND decision policies is needed.  

A system capable of achieving autonomic CND must be able to iterate through the 

CND decision cycle in an automated manner. This cycle typically involves the 

following steps: sensing network changes, analyzing their impact, selecting an 

appropriate mitigation action, and implementing this action back onto the network. 

This process forms a control loop which employs available resources to continuously 

protect the IT infrastructure. Various commercial products and research prototypes 

support individual steps of this control loop. However, the search for an adaptive 

controller design capable of steering IT networks towards an acceptable and stable 

equilibrium in the face of security events is in its infancy. Related research areas 



include autonomic computing, autonomic networking and automated security policy 

management [1] [2]. 

In our work, we investigated the suitability of different Reinforcement Learning 

algorithms paired with dynamic risk assessment to form the basis of an autonomic 

CND controller. We developed an experimental framework, which includes Discrete 

Event Dynamics System (DEDS) simulation and graph models of the environment, to 

iterate through CND policies in various scenarios and attempt to minimize business 

risk. We show that Reinforcement Learning algorithms can learn efficient CND 

policies. We also show that the difference between policies becomes less significant as 

the resources available to implement CND actions are increased. 

1. Risk in CND Decision Making: The Proactive-Reactive Dilemma 

The North Atlantic Treaty Organization (NATO) has defined Computer Network 

Defence as: “Actions taken through the use of computer networks to protect, monitor, 

analyze, detect and respond to unauthorized activity within information systems and 

computer networks”1. Generally, CND actions can be implemented either proactively 

or reactively, and are triggered by metrics such as up/down asset status, security alerts, 

disclosure of new vulnerabilities, or capacity engineering. An important difference 

between proactive and reactive actions is the notion of risk. A proactive action aims to 

reduce the probability p of occurrence of a damaging event (p<1), whereas a reactive 

action typically aims to reduce the damage of an actual event (p=1). Often, there are 

situations of conflicting priorities, where resources must be rationed between proactive 

and reactive actions. An example of such proactive-reactive dilemma would be 

Network Operations Centre Staff (NOC Staff) needing to decide between first patching 

a vulnerable system, or fixing a simultaneous outage on another system. To solve this 

proactive-reactive dilemma, we need a single risk metric which can account for both 

potential (p<1) and actual (p=1) incidents. This risk metric would also need to account 

for the combined effects of time, new security event arrivals and the mitigation actions 

selected.  

This leads to a combinatorial problem whereby risk for every network state, action 

and event timing is path-dependent. This means that the overall risk exposure of a 

given situation depends on the entire sequence of actions taken to recover from it.  

To illustrate this important concept, a decision tree for a simple scenario with three 

assets, only one of which being exposed to the Internet, is shown in Figure 1. The first 

decision is triggered by a new vulnerability on asset 1, which is exposed to external 

exploit sources. From the resulting decision tree, we show a sample of seven potential 

risk outcomes, depending on the timing of the first exploit event, the duration of each 

action, and the mitigation strategy used. Deciding to immediately patch asset 1’s 

vulnerability (node 1) may lead to an optimal path (green arrow starting at node 2, 

which means that low risk is assumed from this point on). However, the same decision 

may also lead to the worst path, in the case an exploit occurs before the patching action 

is completed, and spreads to the two other assets. For this reason, isolating the 

vulnerable host first, prior to patching it, may be an advantageous decision path. 

Although isolating asset 1 results in self-denial of service, it also prevents any exploits 
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from using this host to spread to other hosts. Once exploited, an asset has to be “fixed”, 

which typically means restoring a clean disk image on the host.  
 

 
Figure 1. Example of a simple CND decision tree for a new vulnerability event 

 

In more complex scenarios, new vulnerabilities, exploits and outages can occur at 

any point in time, resulting in new decision branches for each arrival, many of which 

can be followed concurrently, or serviced through a queue, depending on the number of 

available resources. If we also consider that assets may have varying levels of business 

importance, the number of potential outcomes quickly becomes unmanageable. This 

situation captures the problem we are interested in: given vulnerability, exploit and 

outage events, an IT network, stated business needs for IT services and limited 

resources, how can we decide which is the next action to take amongst options of 

fixing, patching, isolating risk-exposed assets, or simply waiting?  

2. Reinforcement Learning for Autonomic Computer Network Defence 

In a decision tree such as the one previously introduced, assessing the cumulative risk 

for every possible branch, in a greedy way, is not a practical strategy. We need to be 

able to sample this state-action space and steer exploration towards the most promising 

action selection strategy. This strategy is also known as a policy, and the optimization 

goal we seek is to minimize business risk over a given time horizon. The search for 

such an optimal policy is referred to as the Generalized Policy Iteration (GPI) problem, 

and different approaches have been used to solve it, including Reinforcement Learning 

[3]. Reinforcement Learning has been successfully used in complex control loop 

systems, namely in automated packet routing problems [4] and automated server 

resources allocation problems [1]. One of Reinforcement Learning’s benefits is that it 

can be used online (adaptation to situations as they occur), offline (planning for 

anticipated situations), on-policy and off-policy. The two last terms refer to whether the 

learned policy is used to influence exploration (on-policy), or whether the policy 

iteration is controlled through another mechanism independently, such as random 

selection, human control, or heuristic rules (off-policy). Finally, Reinforcement 

Learning can make use of state generalization methods such as function approximators, 

to scale in continuous state space applications [5]. 



In Reinforcement Learning, an agent is rewarded after reaching a goal, and this 

reward is discounted to each preceding action through exploration and policy iterations 

(also known as epochs). Since our objective is to find a policy leading to the minimum 

risk exposure, we considered both immediate risk reduction, ∆R(t), and the integral of 

R(t) over the full simulation period, as potential reward functions. We then 

experimented with various Reinforcement Learning algorithms such as Q-learning, and 

parameters such as eligibility traces, learning rates, discount factors and random 

exploration thresholds, to attempt to converge to a desirable CND policy. 

3. Autonomic CND Experimentation Framework Architecture 

Our experimentation framework is presented in Figure 2. It is broken down into seven 

main modules, shown in dark blue, and which we describe in this Section.  

 

 
Figure 2. Autonomic CND Experimentation Framework Architecture 

Action Selection: For every CND environment state change, the Action Selection 

module searches the policy for the best next action, action’, to implement given the 

current state. This is performed either through a greedy search or using a softmax 

Boltzman probability driven choice. The resulting action’ (fix, patch, isolate an asset, 

or wait) is than passed to a resource and scheduled using Discrete Event Scheduling.  

 

Discrete Event Scheduling: The scheduling module generates event duration and 

puts the action event in a queue, ordered by time. In some scenarios, it also receives 

exogenous events from the CND Environment Stochastic Model. The scheduling 

module then advances the simulation clock to the next event in the queue and 

communicates the associated State variables changes to the CND Graph model. We 

implemented this module using the DEDS Java library called ABCMod from 

University of Ottawa [6], which also supports random seed management and sample 

dataset collection. 

 

CND Environment Stochastic Model: This module generates arrival times for 

outages, vulnerabilities and exploits according to predetermined probability 

distributions. Leaving the details of these distributions to other forums, we used 



Poisson distributions, implemented using the CERN Colt Java library 2 , with the 

following means parameter λ values: 0.0134 vulnerabilities per hour, 0.0093 exploits 

per hour per vulnerable/exposed host, and 0.00036 outages per hour per host (which 

includes maintenance related outages). These values were derived from a simple 

statistical and empirical analysis of incident reports3 and public data sources4. Details 

can be found in [7] and [8]. 

 

CND Graph model: The CND Graph model keeps track of the status of each 

assets, their interdependencies, and their support to the business processes (needs). 

This module also enforces the rules for asset status changes (OK, vulnerable, outage or 

exploited), considering safeguards, actions and exogenous events.  This model was 

implemented using the JGraphT5 Java library. 

 

Risk Assessment: The Risk Assessment module queries the CND graph Model for 

the list of affected assets, computes the instantaneous risk R(t) and its integral over the 

simulation run, then passes these scalars to the RL algorithm. The risk is updated 

periodically and considers cumulative effects of potential and actual damages. The 

dynamic risk assessment algorithm is shown in Eq. (1). Its details are kept to other 

forums []. 
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Where: 

• n is the number of affected assets; 

• m is the number of events; 

• di(t) is the damage function incurred by the business at time t for asset i; 

• pj(t)  is the likelihood of occurrence of an exploit for a vulnerability event 

j at time t; 1 otherwise. 

 

RL algorithm: Before each action implementation is completed, the RL algorithm 

queries the CND Graph Model for the current state. After the action implementation, 

the RL module queries the Graph Model for the new state’ and updates the policy with 

these quantities and the associated reward ∆R(t), or the integral of R(t), depending on 

the training strategy. This module is implemented using the QConnectionist [9] Java 

package6, and University of New South Whales Reinforcement Learning Java package 

by Time Eden, Anthony Knittel and Raphael van Uffelen7 .  

 

Policy: The policy updates its state-action map with rewards and states received 

from the RL algorithm. It also provides the action selection module with the preferred 

action for a given state. This was implemented using the neural network provided in the 

QConnectionist framework [9] for the state generalization policy, and standard Java 

vectors objects for the table policies. 

                                                           
2 The Colt Java library is available at http://acs.lbl.gov/~hoschek/colt/ 
3 Trouble Tickets recorded at the Canadian Forces Network Operations Centre 
4 Primarily from the National Institute of Standards and Technology (NIST) 
5 JGraphT is an open source project available at http://jgrapht.sourceforge.net/ 
6 The QConnectionist source code is available at http://www.elsy.gdan.pl/ 
7 Source available at: http://www.cse.unsw.edu.au/~cs9417ml/RL1/applet.html 



4. Experiment  

We implemented a simple CND environment model, as shown in Figure 3. It includes 

eleven nodes regrouped under four interconnected sites in order to create multiple 

service paths. One site hosts a DNS server, one provides access to the internet gateway 

(Router-4), and two other sites host each an email server and a client. The business 

needs include email communications between Email-2 and Email-5, as well as 

browsing the internet from Browser-3. Functional dependencies exist between the 

email clients and the email servers, as well as between the browser and the DNS. These 

business needs and functional dependencies form logical dependencies between assets, 

shown by orange arcs. Using this model, we ran five simulation experiments: fixing 

four concurrent outages, fixing eleven concurrent outages, patching eleven concurrent 

vulnerabilities, patching a vulnerability or fixing exploits, and patching-fixing-

isolating-waiting in a continuous event arrival simulation. We used five different 

policies for each experiment: reinforcement learning with a table and a neural network, 

as well as heuristic policies including fixing or patching assets randomly, fix or patch 

the asset with the highest value first, and doing nothing. 

 

 
Figure 3. Simple CND environment with eleven inter-dependant assets 

 

For each simulation, random number generator seeds for DEDS event timings 

were managed to assure independence of results, avoid over fitting local timing 

conditions and allow policy comparisons.  

5. Results and Discussion 

Prior to running simulations, we computed the contribution of each asset to the stated 

business needs. This was accomplished using an asset valuation algorithm based on the 

ratio of business-enabling network paths supported by each asset described in [8]. In 



our simple CND environment, we found sixty-six paths through greedy, depth-first, 

search. The resulting asset values, presented in Table 1, were later used as damage 

metrics by the dynamic risk assessment module. 

 
Asset name Asset Value Stated business needs 

Server-1 0.7  

Email-2 0.7 0.3 

Browser-3 0.3 0.3 

Router-4 (WWW) 0.3  

Email-5 0.7 0.4 

Server-6 0.7  

DNS-7 0.3  

Router-8 0.72  

Router-9 1.0  

Router-10 0.72  

Router-11 0.88  

Table 1. CND environment asset value results 

 

We then conducted simulation runs for each scenarios, which we repeated in the 

form of epochs to train our RL policies. In the first case, the learning task was to fix 

four concurrent asset outages in an optimal sequence to minimize risk (risk equal 

damages in this case, since p=1 for outages). Both RL policies converged to the same 

risk performance, which was lower than the three other heuristic policies, as shown in 

Table 2.  

 

Policy Integral of R(t) 

Let risk grow 41.4 

Fix random 31.73438 

Fix highest 17.5375 

Q-Connectionist  16.3825 

Q-Learning RL Table 16.3825 

Table 2. Risk integral results of different policies for fixing four concurrent outages. 

 

A sample of the exploration of the solution space by the RL agent can be seen in 

Figure 4. The agent initially explored, rather randomly, various actions leading sparsely 

distributed risk results, than converged to action sequences optimizing its reward 

(minimizing risk in this case). We notice a trend around 32, which is the result for the 

random action sequence used for exploration. Any results larger than 32 were caused 

by choosing “wait” actions. These choices were punished through the risk reward and 

became less frequent as training progressed. We can also observe a secondary periodic 

value after convergence at around 17. This value corresponds to fix or patch the asset 

with the highest value first, which is an expected equilibrium since asset values 

contribute largely to the risk rewards for this scenario. The upper bound of this graph is 

approximately 41 and corresponds to waiting for the entire simulation period. 

 



Exploration of optimum and convergence
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Figure 4. Exploration and convergence pattern for a neural network Reinforcement Learning agent 

 

The other scenarios trialed had significantly larger solution spaces and statistical 

analysis was required to analyze the results. For this purpose we used Chi-Square 

metric with the Student distribution and we adjusted the number of runs to maintain our 

results within approximately 10%, as a quality measure. In all scenarios, the policy 

learned by the Reinforcement Learning agents achieved lower risk in a statistically 

significant way when compared to the random policy. These results are shown in Table 

3.   

 

Scenario 
Random 

(avg risk) 

Q-Learning 

Table policy 

(avg risk) 

Improvement 

(avg risk) 

QConnectionist 

Neural Network 

policy 

(avg risk) 

Improvement 

(avg risk) 

1. Fix 4 outages 

or wait. 

31.73 16.38 -15.35 16.38 -15.35 

2. Fix 11 outages 17.38 16.45 -0.93 13.42 -3.96 

3. Patch 11 

vulnerabilities 

1.87 1.60 -0.27 1.77 -0.10 

4. Patch 1 

vulnerability or 

fix exploit 

1.88 1.61 -0.27 1.81 -0.07 

5. Patch, fix, 

isolate, or wait 

with continuous 

event arrivals 

18933 18402 -531 18327 -606 

Table 3. Reinforcement Learning policies results compared against the random policy. 

 

In Figure 5, we show a sample simulation run for scenario 2, where 11 concurrent 

outages had to be fixed in an optimal sequence. The graph presents various decision 

points and the risk function R(t) for the five trialed policies. Because the random seed 

is the same for all actions timing in this case, we observed that some policies were 

more effective at finding root-cause outages early, hence lowering their overall risk 

score. 

 



Policy Comparison over 1 Simulation Run
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Table 5. Policy comparison for fixing eleven outages in a single simulation run. 

 

Over a 10-year continuous simulation, we observed that policies may be locally 

optimal for risk, but globally very poor. Figure 6 shows the last 15 days of such a 

simulation run. The turquoise fill represents the random policy area under R(t). 

Although, the random policy had the highest risk over the full simulation period, it 

achieved local optimums in regions marked by the red dashed ovals in the graph.  

 

 
Figure 6. Comparison of policies over fifteen days of a 10-year continuous simulation. 

 

In our experiments, the Reinforcement Learning agents seemed capable of learning 

generally good policies, but they could not account for all possible situations caused by 

the various event arrivals and action implementation delays. Even for our simple CND 

environment, in order to achieve globally optimal policies, more information may have 

been required (using a different CND state representation, as an example) as well as 

different learning strategies (more epochs and different parameters).  

We were finally interested in evaluating the effect of resources on risk and policies. 

We conducted a number of 1-year simulation runs, with increasing numbers of NOC 



staff resources, for two different policies: fixing or patching assets randomly and fixing 

or patching the highest asset value first. The averaged results are shown in Figure 7.  
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Figure 7. The effect of resource availability on overall risk. 

 

We can observe that as the response capacity (number of NOC staff) is increased, 

not only is the integral of R(t) decreasing, but so is the difference between both 

policies8. Indeed, if there are no resource constraints, there is no need to prioritize 

responses since there is no event queue, and decision-making becomes essentially 

trivial. This observation clearly supports the value of automation in CND. 

6. Conclusion and Future Work 

In this research effort, we applied Reinforcement Learning to the problem of finding an 

optimal policy for Autonomic Computer Network Defence. We argued the need for a 

controller able to dynamically iterate through various policies and retain the best 

performing one. We have shown that risk maybe a good metric to steer such a 

controller, as long as it accounts for actual and potential events. We presented our 

experimentation framework and validated our concept using a simple CND 

environment and five scenarios. Our results show that Autonomic CND using risk 

states and Reinforcement Learning is possible, but that policies obtained, although 

generally good, did not represent global optimums.  

As future work, we propose investigating further dynamic risk assessment 

algorithms and methodologies. We also suggest investigating different Computer 

Network Defence state representations, for use in conjunction with Reinforcement 

Learning agents herein tested, to see if better policies can be obtained. Namely, we 

propose investigating text mining techniques, including feature extraction, and consider 

modeling the CND environment as a “bag-of-words” to leverage these techniques. 

Finally, we suggest looking into scalability issues, namely investigating distributed 

                                                           
8 Note that the upper bound of Figure 7 represents having no response capacity, which makes all policies 

equivalent by default. 



policies and the use of Collaborative Reinforcement Learning to achieve superior risk 

results and stability.   
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