
217

Exfiltrations using
Polymorphic Blending
techniques: Analysis and
countermeasures

Abstract: Cyber espionage campaigns and cyber attacks make use of data exfiltration on a
regular basis causing damages for billions of dollars. Nowadays, they represent one of the
primary threats, and they are performed by criminals, companies and states. Normally, data
exfiltration uses classic application-layer protocols (e.g. FTP or HTTP) in combination with
very basic obfuscation mechanisms. Even though in most cases these techniques are effective
enough, this paper describes how instead they can be detected using properly configured IDSs.
Moreover, we introduce a novel approach named polymorphic blending exfiltration that serves
to avoid detection from signature-based as well as anomaly-based IDSs. This technique permits
to blend the exfiltrated data in the normal and legitimate traffic. We show how IDSs can be
easily improved in order to be able to detect such exfiltration. Finally, we conclude presenting
different evasion techniques that can be included in the polymorphic blending exfiltration to
keep providing a safe undetectable exfiltration.

Keywords: cyber-espionage, exfiltration, obfuscation, IDS

1. IntroductIon

Over the last ten years cyber security has been dealing with the major threat of data loss
due to cyber espionage campaigns and cyber attacks. Besides the trivial technical security
implications, it also has a substantial economic impact on companies and states; therefore,
nowadays, it sits on top of the list of the most dangerous cyber threats. The action commonly
associated with stealing data is called data exfiltration [1] and it corresponds with moving
data without authorisation from a compromised machine to an external drop-zone controlled
by the attacker. Security experts strive to secure the internal network from the external one,
often overlooking the threats coming from the internal and more trusted network. Within an

Matteo Casenove
Vrije Universiteit
Amsterdam, The Netherlands
m.casenove@gmail.com

2015 7th International Conference on Cyber Conflict:
Architectures in Cyberspace
M.Maybaum, A.-M.Osula, L.Lindström (Eds.)
2015 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal use within
NATO and for personal or educational use when for non-profit or non-commercial
purposes is granted providing that copies bear this notice and a full citation on the
first page. Any other reproduction or transmission requires prior written permission
by NATO CCD COE.

218

organization, or a company, information is a critical resource as it carries personal client data,
classified company data or any other information that could cause substantial damages to its
owner if not adequately protected. Due to its criticality it is called sensitive information and it
represents the target of the exfiltration activity.

During the exfiltration process, it is crucial that the activity does not raise any suspicion and,
most importantly, it is not itself detected. In fact, as soon as the exfiltration is detected, security
personnel can stop the attacker’s operation and enhance the security level so that the possibility
of security breaches decrease. In a computer system, the last actor of the security chain is
the Intrusion Detection System (IDS) [2], which performs traffic inspection in order to detect
malicious activity and - in case - raises an alert. Obviously, in a computer system there can
be many other security solutions but in this work we only focus our study on IDSs. Knowing
the presence of these security systems, the attacker makes use of different techniques for the
purpose of avoiding detection during an exfiltration, such as social engineering, steganography
and encryption, or common protocols [3][4]. Many of the detected malware and espionage
campaigns have been found to be using a single or a combination of these exfiltration methods
[5][6].

In this work we argue that these techniques can be detected not by the conventional signature-
based IDSs but instead, by the more advanced anomaly-based IDSs. Moreover, we propose and
implement a more advanced exfiltration technique named Polymorphic Blending Exfiltration
(PBE) based on the classic Polymorphic Blending Techniques (PBT) [7] in order to evade
the anomaly-based IDSs as well. This technique tries to emulate the normal behaviour of the
network to blend the exfiltration in the normal traffic.

The contribution of this work is threefold: a) it shows that IDSs can be evaded by using our
new polymorphic blending technique, b) it presents a tool that uses this technique successfully
against state of the art IDSs, and c) it shows that the exfiltration tool can take advantages of the
traffic feature tolerance allowed by the IDS in order to avoid high false-positive rate.

The remainder of the paper is organised as follows. In Section 2 we hand over the very limited
literature about exfiltration. Section 3 describes the exfiltration problem and the polymorphic
blending technique. In Section 4, the paper presents the exfiltration tool and the tests performed
to evaluate its exfiltration performances. Section 5 discusses countermeasures that IDSs can
apply in order to detect our exfiltration and then what we can improve in our exfiltration
technique. Finally, Section 6 contains the conclusions of our work and Section 7 paves the way
for future research.

2. rELAtEd worKS

The Polymorphic Blending Technique was first addressed by Fogla in [7] and applied only
for avoiding detection when sending exploits. The first phase of this technique collects the
traffic features and it creates the traffic profile, while it is in the second phase that the real
attack happens and the traffic manipulation comes to be. Perdisci et al. in [8] presents McPAD,

219

an anomaly-based intrusion detection system able to detect the polymorphic blending attack
introduced by Fogla. In our work, we use the polymorphic blending technique by inverting the
direction of the attack: instead of sending the attack from the hacker’s machine to the target
machine, we apply the PBT for exfiltrating data from the infected machine to the hacker’s
device. One of our goals in this work is to test our exfiltration against McPAD in order to
determine whether it is still able to detect our implementation of the technique.

Amit in [9] and Antwerp in [1] present the most common exfiltration techniques that have been
seen in the wild, such as HTTP Post, FTP, DNS tunnelling, VoIP etc. The two works describe
these methods and how they can be detected. Antwerp in particular provides a framework
where to use these methods and where to test the network security.

Wendzel et al. in [10] present the concept of Network Steganography. It is the same technique
that we call blending: hiding information in the network traffic. They compiled a state-of-the-
art survey on several techniques, which use well-known protocols in order to hide information
in the network traffic. They use common high-level protocols like VoIP, P2P, and Google
search queries as well as low-level steganography such using WLANs padding frames or cross-
virtual machine information leakage for Cloud Computing. Moreover, Wandzel in his PhD
Thesis [11] provides a very complete and detailed picture on the field of Covert Channels.
He describes different techniques and uses of covert channels as well as few solutions able to
detect or stop the leakage of information that exploits these channels. Our technique can be
seen as a covert channel but, differently to the ones proposed by Wandzel, we do not exploit
the protocols injecting extra data in the existing communication, instead we create a new
exfiltration connection emulating the content of the packets of the legitimate connections.

Yarochkin et al. in [12] introduced a so-called Network Environment Learning phase used by
covert channel in order to detect the legitimate protocol to use. This learning phase permits to
identify the peers of the communication and which are the protocols that can be used as covert
channels. In our work, the same technique is used in our collecting phase in order to create the
profile for the legitimate traffic.

Khattak et al. in [13] discuss the problem of passing through censorship-resistant systems. They
present the exfiltration techniques that can be applied to avoid the censorship monitors - in
particular the Great Firewall of China - by using known NIDSs vulnerabilities. They exploit
flaws in the TCP and vulnerabilities in the IDSs.

Houmansadr et al. in [14] study the vulnerabilities of censorship-resistant communication
systems. These systems just partially implement well-known communication protocols like
Skype trying to look like legitimate traffic. The research shows the lengthy list of requirements
these censorship-resistant communication systems must respect in order to avoid detection and,
due to this conspicuous list, the work concludes by stating the failure of the “unobservability
by imitation” approach.

Fawcett in [15] proposes a possible solution to fill the gap between the advanced exfiltration
techniques and the ability of detecting them. He uses the entropy characteristics of network

220

traffic and the observation of the traffic state of encryption in order to distinguish data leakage
from benign data. He contributes to the implementation of the detection tool called ExFILD,
which is able to detect exfiltration from normal traffic by using heuristics on the traffic entropy.
In our case, this approach is not effective since with polymorphic blending we tend to maintain
the same entropy as the normal traffic.

Bolzoni et al. in [16] present ATLANTIDES: an architecture for automatic alert verification in
network intrusion-detection systems. Using ATLANTIDES they intend to reduce the number
of false positive by using correlations between the input and output traffic. Unfortunately, the
system requires a training phase where it records the normal output traffic per host. In our
case, the server represents the host and it is contacted for the first time for the exfiltration and
consequently ATLANTIDES cannot create any profile.

3. EXFILtrAtIon

Nowadays, we observe an enormous activity of information theft such as espionage campaigns,
credential thefts or intellectual property thefts, and each of them shares a common denominator:
the action of extracting sensitive data from an infected machine. This action is called data
exfiltration and it targets sensitive information, which is defined as information to which
an unauthorised loss, misuse, access, modification, or disclosure may produce an adversely
security effect [17].

The one and only concern of an exfiltration is to avoid detection of all the security systems
placed in the computer system. Among all of them, we only focus on a subset of them such as
the so-called Intrusion Detection Systems (IDSs). These are monitoring systems designed to
detect malicious activities and, upon detection, raise alerts. In order to evade IDSs, the attacker
uses different methods for exfiltrating data [1]. She can use standard high-level protocols such
as HTTP Post [18], DNS Tunnelling [19], FTP, Skype [20], etc. trying to make the exfiltration
look like a legitimate traffic and avoid suspicions, or she can use transport layer protocols (TCP
or UDP) applying encryption or obfuscation in order to make the IDSs deep-packet inspection
useless. In the first case, by using standard protocols, the attacker blends the data in the normal
traffic, while in the second case she manipulates the data so that it can be unrecognisable. In this
work, we use the Polymorphic Blending Technique (PBT), which combines the two previously
described cases.

A. The Polymorphic Blending Technique
The PBT was used for the first time by Fogla in [7] to avoid exploits detection during an attack.
The main goal of PBT is to perform obfuscation and blend the data in the normal traffic. The
polymorphic part of the technique is put in when the obfuscation is applied and it is used for
avoiding the detection of signature-based IDSs (SIDS). The blending part instead is used to
evade the more advanced anomaly-based IDSs (AIDS). In order to complete these two parts,
PBT is divided in two phases: the collecting and the blending phases. The preliminary phase of
collecting is used to create the traffic profile of the normal traffic. The normal network activities
of the infected machine are recorded and analysed with the purpose of creating a traffic profile

221

to emulate. During this phase, only the most significant network features are recorded and
those are exactly the same ones used by the IDSs to create their profiles. Afterwards, this
profile is used in the blending phase to alter the traffic and to make it as similar as possible
to legitimate traffic. The blending manipulates the traffic features as well as the payload of
the packets by using byte substitution. The profile contains the bytes distribution of the traffic
that is the number of occurrences of each byte within the same connection. After that, PBT
substitutes the bytes of the target data according to the bytes distribution of the profile as shown
in Figure 1. In this way, when this data is sent, the payload statistics remain almost the same as
the one recorded in the profile.

FIGURE 1: BYTE SUBSTITUITION

Byte substitution is a really easy way to obfuscate data and it is also polymorphic since it
changes every time according to the collected traffic.

4. undEtEctABLE EXFILtrAtIon

Almost all the latest pieces of malware and attacks have data exfiltration capabilities and the
information security world is facing big challenges to stop them. As previously said, at the
moment data exfiltration is applied by making use of renown classical methods, but they can
be detected by properly tuned IDSs. In this work, we present a tool that uses PBT for data
exfiltration. Moreover, we evaluate the tool against the most common and widely used IDSs to
test what they are able to detect and under which circumstances.

We assume a scenario where we are able to infect a machine inside the private network without
detection from the security administrator. Hence, we study the scenario after the infection.
We mainly focus the study on the Network Intrusion Detection Systems (NIDS) due to the
polymorphic blending technique we intend to use, which is specifically designed to evade
network-monitoring systems. In this scenario, sensitive data is represented by confidential files
stored in the infected machine. Everything with access to the machine has also access to these
files. Finally, we assume that our view of the network is consistent with the IDS’ view. This
means that the tool must have enough permissions to be able to sniff on the local interface.
Otherwise it cannot collect the traffic information.

222

A. The Exfiltration Tool
The goal of the exfiltration tool is to send data from a compromised machine to a remote server,
which is outside the compromised network and under the control of the attacker, while avoiding
the security measures that may be in place. In this particular case, these security measures are
represented by the IDSs. The exfiltration tool is composed of two main entities: the collector
and the blender. The data is sent to an external part of the tool called BlackHole. It identifies
the drop-zone of the malware, which is where all the exfiltrated data is collected. The structural
design of the tool is represented in Figure 2.

The collector collects network traffic by sniffing on the local network interface and it stores the
statistics on a shared statistic table. The collected features are described in Figure 3 and they
are divided by the three different layers of extraction such as transport, payload and host. The
general tag describes whether the feature is common for every connection or depending on the
single one.

FIGURE 2: TOOL ARCHITECTURE

FIGURE 3: TRAFFIC FEATURES

The statistic table contains data that is continuously updated as well as features for completed
connections. For every new connection, the collector stores the statistics and the byte distribution
of the single connection to a temporary table and only when the connection is closed this data is
moved to the statistics table. The statistic table is implemented as a hash table and it represents
the network profile in the tool.

223

The blender is in charge of the real exfiltration. It sends out sensitive data shaping the traffic
according to the normal profile calculated by the collector. Observing the statistics, it checks
whether the right conditions for the exfiltration are satisfied: for example, it controls if the
time frame allows new connections or if the workload of the infected machine is below a
suspicious threshold. If the number of closed connections stored in the statistic table is above
a certain threshold, we can start the exfiltration otherwise we wait. It selects a connection from
the statistics table that has the entropy as close as possible to the file to exfiltrate, and then it
starts to exfiltrate. The blender supports three different obfuscation methods: XOR, Cesar131,
or byte substitution. For the first two methods, the blender applies basic obfuscation without
extra traffic manipulation and they are used only for the sake of the tests. The first packet the
blender sends to the server is the conversion table which is the table used to deobfuscate the
following packets. The conversion table contains the type of obfuscation used: in case of XOR,
it contains only the obfuscation key, on the contrary in case of byte substitution, it contains the
decryption table which is the reversed byte mapping table to be used for the deobfuscation. The
byte mapping table or encryption table is created by combining the selected connection with
the file byte distribution, so that the most used byte in the file is mapped with the most used
byte in the connection. The blender sends the sensitive data in chunks, each of them obfuscated
and respecting the traffic statistics of the selected connection. In fact, the blender also sends the
packets with the same bandwidth and the same packet size of the connection, so as it is able to
exfiltrate data by imitating the recorded traffic.

The BlackHole is the external entity used by the tool to drop the exfiltrated file. It runs one TCP
and one UDP server and it waits for a transmission to begin. It just needs the first packet with
the deobfuscation information in order to perform its task, which is to receive and reconstruct
the file.

B. Test Environment
We tested our tool against the following most used IDSs divided per type: as signature-based
IDS we used Snort (Version 2.9.2 IPv6 GRE (Build 78))[21], as anomaly-based IDS we used
SnortAD (Version 2.9.2.3 IPv6 GRE (Build 205) and AnomalyDetection Version 3.1) [22] and
McPAD (site version) [8], and finally as hybrid solution we used Suricata (Vesion 2.0.2) [23]
and Bro (Version 2.3-124) [24]. These were used with the default configurations. I only added
the signatures of the sensitive files for Snort and Suricata. They were created by using the first
bytes of each sensitive file, which identify the type. For the anomaly-based IDS, the profile was
created by using from 5 to 10 days of traffic recording. It was normal traffic recorded during
a working day then repeated many times. This is the same traffic used to train the Collector.

1 The classic Cesar13 (or Rot13) encryption is limited to alphabet characters so in our work we implemented
an extended version which uses all the 256 UNICODE characters. In the whole paper this extended version
will be referred as Cesar13.

224

FIGURE 4: EXFILTRATION ENVIRONMENT

The test was conducted in an artificial environment as represented in Figure 4. The IDS in figure
is configured as network gateway, so all the traffic coming from the client goes through the IDS.
It listens to the internal interface sniffing all the traffic. The client using tcpreplay replayed the
recorded traffic, which was used to train the IDS as well as during the execution of the tool.

C. Evaluation
During the evaluation, we wanted to test the detection capabilities of different IDSs against
exfiltration and especially exfiltration using PBT. For this purpose, we selected different types
of files to act as sensitive files in order to be more realistic in our tests. They are listed in Figure
6 along with their entropy.

FIGURE 5: EXFILTRATION TIME PER SENSITIVE FILE USING PBT

FIGURE 6: SENSITIVE FILES

During the tests, we exfiltrated all types of files using all the three obfuscation techniques. XOR
and Cesar13 do not perform any traffic manipulation, it is only implemented by PBT. We were

225

able to exfiltrate our testing sensitive files within one hour time. We also tested the exfiltration
of a larger file (around 911Mb) taking around 30 hours. Figure 5 shows the detailed exfiltration
time per file, even though it is important to emphasize that these times are strongly dependent
on the traffic profile and on the connection selected in the profile. These times are only related to
PBT exfiltrations. We wanted to test the ability of an IDS to detect an exfiltration, so our results
are expressed in terms of success () when the IDS raised an alert in front of an exfiltration,
failure () otherwise.

FIGURE 7: EXFILTRATION WITHOUT DETECTION WITH SNORT, SURICATA, AND BRO.

FIGURE 8: EXFILTRATION WITHOUT DETECTION WITH SNORTAD.

FIGURE 9: EXFILTRATION WITHOUT DETECTION WITH MCPAD.

FIGURE 10: BYTE DISTRIBUTION WITH EXFILTRATTED TRAFFIC.

226

Snort and Suricata were able to detect only not obfuscated exfiltrations as shown in Figure 7
since, as it could be expected, signature-based IDSs failed against any form of obfuscation.
Even with Bro we had the same results (Figure 7). In fact, we could not find any feature in the
exfiltration that could stand out such that they could be described in its very advanced scripting
language.

SnortAD increases the rate of detected exfiltrations as shown in Figure 8. Since the obfuscation
using XOR and Cesar13 does not apply any kind of blending, they are easily spotted by the
IDS. In fact, when blending is applied, beside the payload other traffic features are modified by
changing the shape of the traffic. SnortAD is able to detect every exfiltrations we tested, except
those using PBT. With PBT, we calculated the byte distribution and we applied byte substitution
according to it. The exfiltrated traffic byte distribution is shown in Figure 10 compared with the
ones of the connection and the file. As we can see, the exfiltrated data (blue bars) has the same
byte distribution of the connection (red bars) but with the same number of bytes occurrences of
the file (green bars). The tests performed on SnortAD were also able to select the most effective
traffic feature that permits the detection: the bandwidth. In fact, by tweaking the bandwidth
we were able to fix 30% as the threshold within which the bandwidth can fluctuate without
producing detection.

All the IDSs performed as expected with the exception of McPAD. It produced no detection in
all the tests performed as shown in Figure 9. It has been fed with the same traffic profile we
provided to SnortAD but in this case it was not useful. The reason for the McPAD behaviour is
that it has too narrowed capabilities. Even though there are configurable parameters, they do
not allow to specify any extra rules able to detect our traffic. We placed this IDS with the same
condition of all the others but it was the only one that did not produce any detection and so we
can conclude that it is not fit for the task. In fact, our technique removes the invariant of the
decryption code always present in few bytes of the packets of the PBA, those specific bytes that
help McPAD for detection.

5. countErMEASurE

We successfully proved that PBT is able to exfiltrate sensitive data, while avoiding detection of
the most common and widely used IDSs. Unfortunately, this technique is not bullet proof: by
improving the IDS detection engine we can be able to detect also our technique. For example,
we can improve the anomaly-based IDS combining the information of the number of packets in
a time frame with the concept of flow. For example, when the IDS collects the statistics about
the normal traffic we can detect the average, the max, and the min of the data exchanged within
the same flow (TCP or UDP), and the number of time frame used by an active flow. By using
this information, our exfiltration can be detected because of three reasons: the flow goes over a
long time, the flow is always active, and the amount of data is of considerable size for a single
flow. Moreover, we have an exposed point in our exfiltration: the first packet. We transmit
crucial information for the exfiltration in the first packet and we do it in clear. When using byte
substitution, this packet contains the decryption table that, in most cases, it is 512 bytes big.
Consequently, we can create a signature of such packet for the IDS so that it can be able to

227

detect the exfiltration from the beginning. Unfortunately, even though it can be a useful alert,
this signature is too generic and it can produce too many false positive. In fact, we cannot make
any assumption about the content of the packet since it changes completely every time, and it
depends on both the selected connection and the file to be exfiltrated.

Such is the well-known discussion always present in security: the Achilles and the Tortoise
paradox of security. We are witnesses of defenders and attackers running after each other. Even
in this case this scenario applies perfectly. Improving the IDS with the previously described
features does not stop the exfiltration to adjust the shot. The improved IDS can be easily evaded
by our exfiltration by using multiple connections for a single exfiltration or by using multiple
drop zones. In this way, the single flow is shorter and it is transmitting a smaller amount of
data. The exfiltration can also be spread over a longer time just by stopping and restarting the
connection in different time frames. Lastly, the exfiltration can also be improved by removing
the single of point of failure of the first unobfuscated packet. Since it is relatively small (only
512 bytes), it can be transmitted using back channels such as DNS tunnelling without being
suspicious and attracting any attention.

While all these improvements can be considered reasonable, they have not been tested yet and
we consider this as part of future works.

As we can see, the PBT results a really effective technique due to its capacity of imitating
whatever is considered legitimate traffic, while it makes the detection by IDSs almost impossible.

6. concLuSIon

Data leakage represents a major threat for companies and states, so the attention is moving more
and more on studying exfiltration technique. Gradually, the crucial aspect is to find solutions
able to detect the exfiltrations. Signature-based IDSs can detect exfiltrations if they do not use
any kind of obfuscation. As soon as even the most classical obfuscation method is used, SIDSs
are not able to detect them anymore. Only the more advanced anomaly-based IDSs can be up to
the task. Those are able to detect exfiltrations that use normal obfuscation methods.

In this work, we exfiltrated data by using the more advanced Polymorphic Blending Technique
in order to avoid detection. We implemented this technique along with other obfuscation method
in a tool capable to exfiltrate sensitive data from an infected machine to a server controlled by
the attacker.

The tool is used to test the detection capabilities of different type of IDSs against exfiltration.
Using the PBT, the tool is able to successfully exfiltrate any type of file evading our selection
of the most used IDSs. Even the more advanced anomaly-based IDSs cannot detect such type
of exfiltration.

Finally, we calculated 30% as exfiltration threshold within which the tool can perform a safe
exfiltration exploiting the IDSs tolerance.

228

7. FuturE worKS

The tool we have implemented represents a proof of concept used to test the detection capabilities
of the IDSs. It implements the really basic functionalities necessary to perform exfiltration and
it can be extended with many more capabilities. For example, it can implement the detection
countermeasures described in Chapter 5. Moreover, the tool applies only manipulation of the
traffic features but it does not use any other evasion techniques [25] such as fragmentation or
session manipulation. This could be a different front where to test the IDSs.

Finally, we limited our tests to a subset of IDSs but it would be interesting to test the tool against
other IDSs such as ExFILD [15].

rEFErEncES

[1] R. Van Antwerp, “Exfiltration techniques: An examination and emulation” PhD Thesis, University of
Delaware, 2011.

[2] S. Axelsson, “Intrusion Detection Systems : A Survey and Taxonomy” Technical Report 99-15,
Department of Computer Engineering, Chalmers University, March 2000.

[3] A. Giani, V. H. Berk, and G. V Cybenko, “Data exfiltration and covert channels,” in Sensors, and
Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and
Homeland Defense V. Edited by Carapezza, Edward M. Proceedings of the SPIE, 2006, vol. 6201, p.
620103.

[4] J. Andress and S. Winterfeld, Cyber Warfare: Techniques, Tactics and Tools for Security Practitioners, 1st
ed. Syngress Publishing, 2011.

[5] G Data SecurityLabs, “Uroburos Highly complex espionage software with Russian roots” Technical
Report G Data SecurityLabs, 2014.

[6] F-secure Labs Security Responce, “COSMICDUKE: Cosmu with a twist of MiniDuke” Technical Report
F-secure Labs, 2014.

[7] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Polymorphic blending attacks” in
Proceedings of the 15th USENIX Security Symposium, 2006, pp. 241–256.

[8] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “McPAD: A multiple classifier system for accurate
payload-based anomaly detection” Comput. Networks, vol. 53, no. 6, pp. 864–881, 2009.

[9] I. I. Amit, V. P. Consulting, and S. Art, “Advanced Data Exfiltration – the way Q would have done it”
GovcertNT, Rotterdam, Netherlands, 2011.

[10] S. Wendzel, W. Mazurczyk, L. Caviglione, and M. Meier, “Hidden and Uncontrolled-On the Emergence of
Network Steganographic Threats” arXiv Prepr. arXiv1407.2029, 2014.

[11] S. Wendzel, “Novel Approaches for Network Covert Storage Channels” PhD Thesis, Fernuniversität
Hagen, 2013.

[12] F. V. Yarochkin, S. Y. Dai, C. H. Lin, Y. Huang, and S. Y. Kuo, “Towards adaptive covert communication
system” Proc. 14th IEEE Pacific Rim Int. Symp. Dependable Comput. PRDC 2008, pp. 153–159, 2008.

[13] S. Khattak, M. Javed, P. D. Anderson, and V. Paxson, “Towards Illuminating a Censorship Monitor’s
Model to Facilitate Evasion,” Presented as part of the 3rd USENIX Workshop on Free and Open
Communications on the Internet, Berkeley, CA, pp. 1–7.

[14] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead: Observing unobservable network
communications” in Security and Privacy (SP), 2013 IEEE Symposium on, 2013, pp. 65–79.

[15] T. Fawcett, “ExFILD: A tool for the detection of data exfiltration using entropy and encryption
characteristics of network traffic” PhD Thesis, University of Delaware, 2010.

[16] D. Bolzoni, B. Crispo, and S. Etalle, “ATLANTIDES: Automatic Configuration for Alert Verification in
Network Intrusion Detection Systems” In: LISA ’07: Proc. 21th Large Installation System Administration
Conference, USENIX Association (2007) 141–152.

[17] B. Guttman and E. A. Roback, An introduction to computer security: the NIST handbook. DIANE
Publishing, 1995.

[18] A. Rashid, R. Ramdhany, M. Edwards, S. M. Kibirige, A. Babar, D. Hutchison, R. Chitchyan, “Detecting
and Preventing Data Exfiltration” Technical Report, Academic Centre of Excellence in Cyber Security
Research, 2014.

229

[19] M. Van Horenbeeck, “Deception on the network: thinking differently about covert channels” School of
Computer and Information Science, Edith Cowan University, Perth, Western Australia, 2006.

[20] W. Mazurczyk, “VoIP steganography and its Detection—A survey,” ACM Computer Survey, vol. 46, no. 2,
p. 20, 2013.

[21] M. Roesch and others, “Snort: Lightweight Intrusion Detection for Networks” in LISA, 1999, vol. 99, pp.
229–238.

[22] M. Szmit, R. Wezyk, M. Skowro’nski, and A. Szmit, “Traffic Anomaly Detection with Snort” Information
Systems Architecture and Technology. Information Systems and Computer Communication Networks,
Wydawnictwo Politechniki Wrocławskiej, Wrocław, pp. 181–187, 2007.

[23] D. Day and B. Burns, “A performance analysis of snort and suricata network intrusion detection and
prevention engines” in ICDS 2011, The Fifth International Conference on Digital Society, 2011, pp.
187–192.

[24] V. Paxson, “Bro: a System for Detecting Network Intruders in Real-Time” Computer Networks, vol. 31,
no. 23–24, pp. 2435–2463, 1999.

[25] K. Timm, “Ids evasion techniques and tactics” SecurityFocus (Infocus), vol. 7, 2002.

230

