
345

HTTP Security Headers 
Analysis of Top One 
Million Websites

Abstract: We present research on the security of the most popular websites, ranked 
according to Alexa’s top one million list, based on an HTTP response headers analysis. 

For each of the domains included in the list, we made four different requests: an 
HTTP/1.1 request to the domain itself and to its “www” subdomain and two more 
equivalent HTTPS requests. Redirections were always followed. A detailed discussion 
of the request process and main outcomes is presented, including X.509 certificate 
issues and comparison of results with equivalent HTTP/2 requests. 

The body of the responses was discarded, and the HTTP response header fields were 
stored in a database. We analysed the prevalence of the most important response 
headers related to web security aspects. In particular, we took into account Strict-
Transport-Security, Content-Security-Policy, X-XSS-Protection, X-Frame-Options, 
Set-Cookie (for session cookies) and X-Content-Type. We also reviewed the contents 
of response HTTP headers that potentially could reveal unwanted information, like 
Server (and related headers), Date and Referrer-Policy.

This research offers an up-to-date survey of current prevalence of web security policies 
implemented through HTTP response headers and concludes that most popular sites 
tend to implement it noticeably more often than less popular ones. Equally, HTTPS 
sites seem to be far more eager to implement those policies than HTTP only websites. 
A comparison with previous works show that web security policies based on HTTP 
response headers are continuously growing, but still far from satisfactory widespread 
adoption.

Artūrs Lavrenovs
NATO CCD COE
Tallinn, Estonia
arturs.lavrenovs@ccdcoe.org

F. Jesús Rubio Melón
Spanish Joint Cyber Defence Command
Madrid, Spain
jrubio@isdefe.es

2018 10th International Conference on Cyber Conflict
CyCon X: Maximising Effects
T. Minárik, R. Jakschis, L. Lindström (Eds.)
2018 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal 
use within NATO and for personal or educational use when for non-profit or 
non-commercial purposes is granted providing that copies bear this notice 
and a full citation on the first page. Any other reproduction or transmission 
requires prior written permission by NATO CCD COE.



346

1. Introduction

The main goal of this research is to assess the current adoption rate of security policies 
based on HTTP response headers on the most popular Internet websites. Declarative 
web security through HTTP response headers constitute a powerful and easy way 
to enhance website security, while relatively little effort is required from website 
operators. It has been a recurrent research topic, aided by the fact that the nature of the 
World Wide Web makes data publicly accessible to any interested party and that the 
WWW itself is continuously growing and evolving. 

Besides measuring security headers adoption in popular websites, we set out to 
understand it in a deeper way by trying to find correlations between adoption rates 
and variables like HTTPS usage and popularity rank position. We want to gain insight 
into why and how policies based on HTTP headers are adopted. As will be shown, 
the most popular a website is, the more likely it will apply security through HTTP 
headers. Those sites also tend to be more prone to favouring HTTPS protocol over 
HTTP.

Regarding the structure of this paper, in the first section we present a brief literature 
review concerning different past security analysis and current online efforts. Next, 
we proceed to describe in detail the data set that served as the basis for this research. 
We then show our results for all analysed HTTP response headers, and we conclude 
with a “conclusions” section where we summarize our findings and a last section on 
planned future work.

2. Related work

Extensive analysis of Content Security Policy (CSP) adoption among the top one 
million websites is provided by Ying et al. (2015). It was found that CSP is used in less 
than 0.2% of the sites, and oftentimes incorrectly. They also investigated other relevant 
security related headers. In particular, they found that X-XSS-Protection, X-Frame-
Options and Strict-Transport-Security headers were implemented, respectively, in 
about 4.4%, 4.1% and 1% of the websites they analysed. Despite the low adoption rate 
of HTTP security related headers found by Ying et al., their results show a noticeable 

Keywords: web security, HTTP headers, top one million websites survey, X.509 
certificate, HTTP/2, HTTPS, HTTP Strict Transport Security, Content Security Policy 



347

increase in the adoption rates observed over research done previously by Weissbacher 
et al. (2014). In fact, they conducted the first CSP adoption study of the Top One 
Million websites in 2012-2014 and found that CSP was used in less than 0.1% of 
sites. Other security-related HTTP headers, like X-XSS-Protection, X-Frame-Options 
and Strict-Transport-Security were seen on 4.6%, 4.1% and 0.3% of the websites, 
respectively. Although both of these papers primarily concentrate on CSP adoption 
rate and related implementation issues, they analysed other security headers as a by-
product.

Chang et al. (2017) investigated the “redirection trail”, which basically consists of 
a set of pairs, each one formed by the Location header combined with redirection 
HTTP status codes. Combining this redirection trail with other data readily available, 
like protocol and host, allowed the researchers to evaluate the security of the Top 
One Million websites. They found that 20.5% of them contained some configuration 
inconsistency related to redirection requests that could be exploited by the adversary. 
Sood et al.(2011) conducted a research in 2011 among the world’s top 43 banks. They 
found that none of them implemented the HTTP security related headers available at 
that time. 

Response HTTP header analysis from a security standpoint is also present outside 
academic literature. Scott Helme’s (2017) website has published multiple times 
research on security headers prevalence and HTTPS adoption in the Alexa Top One 
Million websites. The latest one we know of, at the time of this writing (October 
2017), is from August 2017. He has been reporting positive trends of adoption rates 
of most common HTTP headers. Additionally, his website (IO) provides a public tool 
that enables checking of security headers for any website. Based on these results, 
the tool assigns a given grade, from A to F, for the provided website. A similar tool 
is provided by Mozilla Observatory that also gathers statistics from executed checks 
and estimates that about 10% of the checked websites follow good practices regarding 
security header configuration (Mozobs). April King (2017) has conducted similar 
research on Alexa Top One Million websites and found similar results about positive 
trends.

3. The Data Set

A. URL Set
This research makes use of Alexa “top one million” website list (1M) as the source 
for domains to be analysed. For each domain contained in the list, we made four 
HTTP/1.1 requests: to http://domain, https://domain, http://www.domain and https://



348

www.domain. Timeout for connection establishment was set to 60 seconds, and 
response timeout was also set to 60 seconds.

B. Data collection approach
We developed a custom Python tool based on Python requests library (Pyreq). After 
an HTTP/1.1 response arrived, only HTTP response headers and status code were 
saved to a relational database. The response body was disregarded. In order to mimic 
real users, we set User-Agent and other request headers to match exactly those of 
the Mozilla Firefox browser (version 50.0 on Ubuntu 17.04). For all the requests we 
followed redirections, saved them all, and created convenient relationships between 
them. Finally, duplicate URL requests that arose from redirections were removed 
from the dataset.

Preliminary testing revealed that using Certification Authorities (CA) and 
Intermediaries lists bundled inside Ubuntu were not sufficient for HTTPS requests. 
Therefore, we made use of public CA lists Mozilla CA (Mozca) and Mozilla 
Intermediaries (Mozinter) (they are both internally used by the Firefox browser). 
Several full scans were performed during August and September 2017, and we always 
updated website and CA lists right before the scanning process. In this paper we will 
exclusively refer and analyse data gathered between September 1st and 4th, 2017. 
After the scan was completed, we retried those websites that had failed all of our four 
requests, since it just might indicate temporary network issues.

C. Data Overview
Our final dataset contained 3.135.962 recorded responses with unique URLs (either 
the protocol, the domain or the subdomain was different). At least one response was 
received from 975.729 websites (97.5% of all one million domains). Only 2.558 
websites were successfully processed during the retrying process (to allow for 
network issues). We observed large amounts, up to 1.4 million, of duplicate URL 
records caused by redirection to an already visited URL. They were all removed from 
the database. We obtained about 27% more responses from www-subdomains than 
from direct domain requests.

For our current analysis we have considered only unique URL responses with HTTP 
response status code 200, which amounts to 1.478.750 records.
 
D. Data quality
The Alexa top one million list was chosen because it is a large list, but not “too large”, 
thus data collection can still be achieved in a few days or less. Moreover, the list 
contains the most popular websites, an attractive target for attackers and security 
researchers alike. As pointed out previously, it has been repeatedly used in various 



349

web security surveys. Alternative lists, like the ones by Majestic (Majestic) or Cisco 
(Umbrella) also provide one million most popular sites, although to compare our work 
with previous results we have adhered to Alexa’s list. 

However, Alexa’s list, despite its usefulness, has some caveats. It makes use of 
proprietary ranking and domain processing algorithms not fully disclosed and we 
have observed inconsistencies within the list: it contains many domains that cannot be 
accessed directly (typically because there is no DNS entry for them, like in cloudfront.
net), but can be through the www-subdomain. Additionally, a significant set of entries 
in the list are actually subdomains (most common websites are tumblr.com, blogspot.
com and wordpress.com with 5.698, 2.904 and 2.696 respective subdomains). 
Although content is different on these subdomains, these platforms usually provide 
little to no control for header configuration to final website authors. In fact, all of their 
subdomains will share the same security headers. Even some apparently unrelated 
domains will share the same headers configuration because they are hosted by these 
providers, although their domain name is totally unrelated to the hosting server.

E. Response Codes
Status code distribution observed in the responses for both HTTP and HTTPS requests 
are presented in Tables 1 and 2. As clearly seen from these data, most websites seem 
to prefer the www subdomain to the plain domain name, regardless of the protocol 
(47% of HTTP sites and up to 63% for HTTPS ones). As for redirections, we have 
observed that 45.7% of HTTP domain requests redirect to the corresponding www 
subdomain, and 15.5% of HTTPS domain requests point to the www subdomain. Most 
of the remaining requests are server-side errors either intermittent or permanent (e.g., 
web servers which are not properly configured to handle the domain or subdomain 
requests).

TABLE 1. STATUS CODES FOR HTTP REQUESTS

status

301

200

302

403

404

count

46,8%

38.9%

12.0%

0.7%

0.7%

Domain responses

status

200

301

302

404

403

count

47.3%

39.5%

11.0%

0.6%

0.6%

WWW subdomain responses



350

TABLE 2. STATUS CODES FOR HTTPS REQUESTS

F. HTTPS Subset
Our data set allowed for a detailed analysis of HTTPS deployment since we stored 
all failed requests and their associated error messages. The result for over two million 
HTTPS requests are presented in the Figure 1.

FIGURE 1. HTTPS RESPONSES

Only about half of the scanned domains and www subdomains (47.7%) are properly 
configured for HTTPS. That number includes 24.2% of sites that are actually 
responding with 200 OK status code and a substantial number of redirects and HTTP 
errors (23.5%). 

Many sites, 23.2% of all HTTPS requests, do not respond to HTTPS at all, either 
because of the TCP connection being refused, timeout or missing DNS records. 

We found a sizeable number of cases, 29.1% of all HTTPS requests, where it was 
possible to establish a TCP connection on port 443, but HTTPS ultimately failed. The 
reason for failure is related to verification errors (mostly expired certificates, self-
signed, signed by untrusted CA’s or malformed), handshake errors (usually outdated 

status

200

301

302

404

403

count

47.3%

39.5%

11.0%

0.6%

0.6%

Domain responses

status

200

301

302

403

404

count

62.7%

26.0%

8.4%

0.7%

0.6%

WWW subdomain responses



351

protocols) and hostname mismatching. A 29.1% rate is remarkable: it implies that 
a large number of web servers are already somehow configured to handle HTTPS 
requests, but have mostly missed the step of acquiring and installing the correct X.509 
certificate (even though nowadays it is possible to quickly obtain a certificate for 
free, for example from the highly popular “Let’s Encrypt” (Lets) online certification 
authority). 

Regarding handshake errors, 5.1% of all HTTPS requests, we found that there is a 
small number of websites that work properly when requested by the real Mozilla 
Firefox browser but not by our software. We traced back that behaviour to outdated 
and misconfigured server sites that are still supported by the browser for backwards 
compatibility, but not by the OpenSSL 1.0.2g library we used in our scanning software.

Host name mismatching happens in about 14.8% of all HTTPS requests we made. That 
can happen because there is no Subject Alternative Name (SAN) and the requested 
host does not match certificate’s Common Name (CN) or because, even though 
CN and SAN are both present, the hostname does not match either of them. This 
latter cause is more common (12.7%) than the former (2.1%). Name mismatching is 
typically found in shared environments where several websites run on a single server 
that oftentimes issues a “default” SSL certificate (as with the well-known shared 
hosting provider Hostgator). The most common reason for name mismatching is that 
CN is set to either www.domain or *.domain, and therefore certificate validation fails 
for the https://domain request (like the high ranked website ups.com).

G. HTTP/2 Analysis
Our data gathering procedure, and the subsequent response headers analysis, is entirely 
based on HTTP/1.1 requests. However, HTTP/2 is quickly growing in popularity 
and it may replace HTTP/1.1 as the main web protocol in the near future. Different 
protocol versions might be somehow correlated with different security settings (due, 
for example, to different security awareness). That raises the question whether there 
are different response headers, or different headers values, in HTTP/1.1 and HTTP/2 
data subsets. To answer this question, we used the same Alexa top one million websites 
list (1M) and followed the same data gathering approach, but this time making an 
additional HTTP/2 request to each website’s domain and www-subdomain. We made 
use of Python hyper library (Hyper). If an HTTP/2 request was successful, we made 
the equivalent HTTP/1.1 request to the same URL and compared the HTTP headers 
and their values for both responses. To simplify HTTP header comparison, we did not 
follow redirects and did not analyse response status codes. Furthermore, we did not 
take into account the fact that multiple backends can serve a single domain or www 
subdomain (in principle, those servers could have different configurations and that 
might produce different HTTP headers).1

1	 Those backends could be either serving requests using single IP address or multiple IP addresses, but we 
chose not to manipulate to which IP addresses HTTP requests are being sent. 



352

The resulting dataset consists of 746.758 records, totalling 211.638 unique domains 
that support HTTP/2 protocol (21% of all Alexa top one million websites). This 
percentage is a bit higher than the figure reported by the w3techs portal, 17%, as the 
HTTP/2 support rate across all the world wide web (W3tech). However, it is coherent 
with the fact that we are analysing most popular websites, not all existing ones. The 
failure rate of HTTP/1.1 requests to same domain following successful HTTP/2 
requests is insignificant (0.26%).

1) Missing headers
We analysed the top 10 HTTP headers missing from HTTP/2 responses but present 
in HTTP/1.1 responses, and vice versa. The results, header names and their missing 
count in their counterpart protocol requests, are presented in Table 3. As might be 
expected, most significant differences are related to headers used in establishing 
and maintaining the HTTP/1.1 connection (those headers are unneeded in HTTP/2). 
Fortunately, none of these missing headers are related to any security issue. 

Regarding security related headers, some may be missing in one version of the 
protocol, but present in the other, although the numbers are insignificant in all cases. 
For example, X-XSS-Protection response header is missing in 28 HTTP/2 requests 
that issue it in the equivalent HTTP/1.1 requests. Similarly, 45 HTTP/1.1 requests did 
not contain that header, although it was present in the equivalent HTTP/2 ones. We 
found that no common misconfiguration pattern is distinguishable, and most common 
cause could be attributed to responses coming from different backends serving the 
same domain name, but different protocol.

TABLE 3. RESPONSE HEADERS NAMES COMPARISON

count

350152

262147

28559

5816

3014

2983

1987

1137

1107

1084

Missing in HTTP/1

content-length

link

pragma

set-cookie

vary

cache-control

expires

x-pingback

accept-ranges

x-litespeed-cache-control

count

11082

3076

1080

1058

672

640

614

415

405

297



353

2) Different values in HTTP headers
The top 20 response headers that carry different values in equivalent HTTP/1.1 and 
HTTP/2 requests are presented in Table 4. 

TABLE 4. RESPONSE HEADERS VALUES COMPARISON

Set-Cookie differences are due to different session identifiers. The differences in 
the response headers Cf-Ray, X-Cache, X-Varnish, Via, X-amz-cf-id, X-Served-By, 
X-Timer, X-Contextid, X-Servedby, X-Request-Id, X-Via and X-Cache-Hits are due to 
debug information, usually set by cloud providers and caching frontend servers. Date, 
Expires and Last-Modified response headers contain timestamps that are usually one 
second apart, in agreement with the fact that the requests are made consecutively. 
Content-Encoding differences are due to Brotli, the compression algorithm used for 
HTTP/2. Differences in the Vary header value are related to different compression 
algorithms. Content-Length variations are caused by the dynamic nature of the 
generated content. Nevertheless, none of these headers can be related to any security 
risk, and the variations are meaningless from the point of view of our security analysis.

Regarding security related headers, only Content-Security-Policy and X-XSS-
Protection showed any significant count difference in 401 and 358 of the requests, 
respectively. Almost all of the CSP differences lie either in nonce tokens or report URI 
identifiers. X-XSS-Protection differences can be always traced back to different report 
URL’s found in the value of the header. 

Server header values show some differences between the protocol versions and 
in most cases it is irrelevant (variations of nginx server identified by names like 

Header

set-cookie

cf-ray

date

expires

x-cache

server

content-length

x-varnish

via

x-amz-cf-id

count

215265

183755

181046

23789

14628

10732

9244

6902

6865

6308

count

5229

4921

4838

4756

4706

4434

4384

4295

4283

3664

Missing in HTTP/2 Missing in HTTP/1.1



354

openresty, Tengine, kinsta-nginx). For example, 68.6% of HTTP/2 requests carried 
nginx as the Server value, but openresty for the equivalent HTTP/1.1 requests (77.2% 
of these cases correspond to tumblr.com subdomains). However, in about 400 cases 
we identified obvious attempts to try to conceal the server name by removing the 
header or changing it to an undescriptive one in one of the protocol version, but not 
in the alternative one. 

In summary, regarding versions 1.1 and 2 of the HTTP protocol, no significant HTTP 
response headers variations were found from the security perspective. The only 
noticeable risk that shows some correlation with protocol version is information 
leakage via Server response header. Additionally, a potential security risk could arise 
due to inconsistent configuration management across sets of backend servers (which 
still could be useful to an attacker). However, this issue requires further investigation 
and lies outside the current research.

4. HTTP response headers analysis

As stated previously, the evaluation of the security of the websites is done through an 
analysis of the HTTP headers sent from the web server. Some HTTP headers, among 
all possible server-side headers, were devised to instruct the web browser to protect the 
web application against certain security threads. Accordingly, their analysis constitute 
the basis of our current research. Additionally, a few HTTP server-side headers may 
carry information about the web application that potentially can help an attacker to 
perform malicious actions. They will also be analysed as part of our research. 

The headers involved in each group are the following:

Security headers:
•	 Strict-Transport-Security
•	 Content-Security-Policy (and related Content-Security-Policy-Report-Only)
•	 X-XSS-Protection
•	 X-Frame-Options
•	 Set-Cookie 
•	 X-Content-Type

Information revealing headers:
•	 Server (and related headers)
•	 Date
•	 Referrer-Policy



355

We have deliberately excluded HTTP Public Key Pinning (HPKP) from our research. 
Standardized in IETF 7469, HPKP provides a mechanism by which the TLS protocol 
is protected against Certification Authority (CA) attacks and spoofed certificates. 
However, it is well known that its implementation poses considerable risks for website 
operators. It is currently supported by Chrome, Firefox and Opera. Nevertheless, 
Google has recently announced that it will deprecate it in Chrome in May 2018, and 
soon thereafter it will be completely removed Palmer 2017. Research by Scott Helme 
(2017) regarding his own analysis of Alexa Top One Million sites indicates that it 
is usually implemented wrongly by website operators. Security expert Ivan Ristic 
(2016) has also pointed out similar concerns about HPKP. 

Subresource Integrity (SRI) has been sometimes taken into account in the context 
of top one million analysis (see Mozilla Observatory (Mozobs) or recent April King 
results (l2017). By specifying a hash token together with the URL of any given 
resource on a web page, a browser can check that the resulting content obtained from 
actually downloading the resource has not been unexpectedly altered. This technique 
is effective, for example, against attackers manipulating JavaScript libraries located 
in Content Delivery Networks. Chrome, Firefox and Opera already implement this 
feature. SRI is a relatively new protective mechanism, and current recommendation 
is from 2016 (SRI). Despite the undeniable interest in measuring its current adoption 
rate among the top one million websites, it entails parsing the HTML content found in 
the body of the HTTP responses, and it lies outside the scope of the current research, 
centred around HTTP response headers analysis.

A. Security Headers

1) Strict-Transport-Security Header
HTTP Strict-Transport-Security header (or HSTS, for short) allows a web server 
to inform the browser that all subsequent connections for all requests should be 
established exclusively through HTTPS, never through HTTP, using a valid certificate. 
It helps prevent several man-in-the-middle (MITM) attacks that may arise in different 
situations. Some common vulnerable situations are the following: 

•	 A user types in a URL in the browser address bar. By default, this URL will 
be requested by the browser through an HTTP connection, not an HTTPS 
one.

•	 By means of social engineering techniques, a user is tricked into clicking 
on an HTTP link, instead of an HTTPS one, therefore initiating the HTTP 
request that can be captured by the MITM. 

•	 An attacker sends a fake certificate, hoping that the user will accept it by 
clicking through the warnings displayed by the browser.

•	 Forgotten HTTP links scattered throughout the web pages. 



356

All of these vulnerable situations can be avoided by the web application just by issuing 
this header. In fact, no other server header or web application configuration exists 
that can prevent these kind of MITM attacks (at least, regarding the first two cases). 
That makes HSTS a key protective server-side header. The header specification was 
published in 2012, (RFC 6797). 

By parsing the scanning data obtained from the top one million web sites we have 
found that most websites do not issue any HSTS header. The aggregated results can 
be seen in Fig 2. 

FIGURE 2. HSTS IMPLEMENTATION RATE AS A FUNCTION OF WEBSITE POPULARITY

It is readily appreciated that highly popular sites tend to implement HSTS more often 
than those sites that are less popular. Nearly 38% of top one thousand sites implement 
HSTS, while only 17.5% of top one million HTTPS websites implement it. This trend 
will be recurrent for all headers analysed in this research: the most popular a site is, 
the more security headers it will tend to implement. 

Our numbers are comparable to the ones published by Helme (2017), who reports 
a 7.3% penetration rate. The difference is due to the fact that Helme’s results are 
referred to the whole dataset, just not to the HTTPS sites (about 40% of all websites). 
Our 17.5% HSTS implementation rate becomes 7.0% when referred to the whole 
dataset. April (2017) reports a 4.4% adoption rate in June 2017 (also referred to the 
whole dataset). We believe, however, that HSTS rates should be referred to the HTTPS 
subset, since HSTS does make sense in HTTP only sites.



357

Only about 2% of HTTP websites redirect to an HTTPS site while simultaneously 
enforcing HSTS policy. Finally, a small number of sites (0.7%) make use of HTTP 
protocol and respond with a status code of 200, instead of responding with a redirection 
300 code.

3) Content-Security-Policy Header
Content-Security-Policy (CSP) is a key response header that provides strong defence 
mechanisms against Cross Site Scripting (XSS) and other client-side injection attacks 
by whitelisting allowed sources and disabling certain insecure JavaScript features. It 
can also be used to prevent attacks against HTTPS, mostly those related to inadvertent 
HTTP links within HTTPS web pages. It has been standardized by W3C, originally in 
2012 (CSP Level 1), then revised and augmented in 2015 (CSP Level 2) and currently 
undergoing a third revision (CSP Level 3). CSP is currently supported by all major 
browsers, with the exception of Microsoft Internet Explorer which uses the alternative 
X-Content-Security-Policy header.

The header directives, up to 16 in CSP2, offer the possibility of a fine-grained 
configuration, although at the cost of having to deal with non-trivial setup choices. In 
fact, due to the growing complexity of client-side scripting code and the large number 
of different assets handled by web applications (up to hundreds or even thousands 
of different resources requested from within a given page), the adoption of a CSP 
policy may result in unexpected glitches. Therefore, most implementation guidelines 
recommend starting to implement CSP by making use of the related Content-Security-
Policy-Report-Only response header that allows web administrators to test their CSP 
policies before they are fully enforced without risking unwanted web application 
behaviour. 

Our results show that CSP is scarcely implemented in HTTPS sites (3.4%) and hardly 
in HTTP sites (0.4%). The figures for Content-Security-Policy-Report-Only usage 
are even smaller (0.3% and 0.1% respectively). Globally, including both HTTP and 
HTTPS sites, CSP is implemented in 1.6% and CSP report only version in just 0.2% of 
sites. On the other hand, the implementation rate of CSP with respect to the popularity 
rank follows the same pattern as with other headers: more popular sites choose to 
issue the CSP header more often than less popular ones. These findings can be easily 
appreciated in Figure 3:



358

FIGURE 3. CSP IMPLEMENTATION RATE AS A FUNCTION OF WEBSITE POPULARITY

Our results are similar to the ones by Helme (2017), from August 2017, about 2.0% 
globally, while significantly higher than April’s (l2017), 0.04% in June 2017.

We have also observed that there are significant differences between the directives 
used in HTTP and HTTPS sites. In fact, for HTTP sites, frameAncestors (48.27%), 
scriptSrc (35.96%) and defaultSrc (35.72%) are the most common directives. 
However, HTTPS sites typically issue different directives. The most common ones 
being: upgradeInsecureRequests (61.79%), reportUri (53.34%) and defaultSrc 
(20.37%). 

On the other hand, it is interesting to note that the CSP report only version seems to 
differ from fully enforcing CSP. In fact, the most common directives in HTTP sites 
are reportUri (94.68%), blockAllMixedContent (81.73%), defaultSrc (13.53%). And 
for HTTPS sites, most common CSP report only directives are reportUri (94.68%), 
blockAllMixedContent (81.73%), defaultSrc (13.53%). 

4) X-XSS-Protection Header
This header is responsible for toggling off the XSS filter implemented by most 
current browsers (except, notably, Firefox). By default, the XSS filter is enabled, but 
website administrators can disable it by setting its value to zero (X-XSS-Protection: 
0), possibly to prevent the browser from interfering with the desired behaviour of the 
web application. Web sites that issue that header, and set its value to zero, risk being 
vulnerable to reflected XSS attacks. Content Security Policy, and in particular CSP 
level 2 contains a directive, “reflected-xss”, that completely replaces this header.



359

Our scanning results for the full one million set show that about 12% of HTTPS sites 
and 6% of HTTP sites set this header. Most of the times the header is issued so that 
the browser is granted the right to apply its XSS filter, but in 3% of HTTP sites, and 
nearly 2% of HTTPS sites, the configuration is such that the sites deny permission to 
apply the filter. Therefore, as expected, HTTPS sites tend to be more concerned with 
security. In a similar way, the more popular a site is, the more it will tend to set the 
header, and will mostly do it so that the browser is granted the right to enable its filter. 
Both trends can be appreciated in Figure 4.

FIGURE 4. X-XSS-PROTECTION IMPLEMENTATION 
RATE AS A FUNCTION OF WEBSITE POPULARITY

Our findings are in agreement with a global implementation rate of [Helme2017], 
9.3%, and [April2017], 8.1% (none of them break up implementation rates by protocol 
or popularity of website).

5) X-Frame-Options Header
This header, standardized in RFC 7034, is used to instruct a browser whether a 
given web page or resource is allowed to appear within a Frame, iFrame or Object, 
thereby avoiding frame based attacks, like “clickjacking” (for example, rydstedt or 
OWASPxfo). As with X-XSS-Protection, this header is superseded by CSP, which 
contains a directive, “frame-ancestors”, that completely replaces X-XSS-Protection 
header. There are three “options”, or directives, defined for this header: deny, same-
origin and allow-from.

The results from our scanning survey show once more that HTTPS sites are prone to 
add this header more often than HTTP sites, 17.38% and 7.48%, respectively. For the 



360

sites that choose to issue this header, the most common directives found are “same-
origin” (86% in HTTP and 91% in HTTPS) and “deny” (12% in HTTPS and 7% in 
HTTP). Again, highly popular sites make use of this protection more often than less 
popular sites as can be readily appreciated in Figure 5:

FIGURE 5. X-FRAME-OPTIONS IMPLEMENTATION RATE AS A FUNCTION OF WEBSITE POPULARITY

These results do not essentially deviate from those of Helme (2017), 12.4% or April 
(2017), 11%.

6) Set-Cookie Header
This header is used by web sites to send cookies to the client side as part of the 
response message. Supported by all browsers, its current syntax was standardized by 
IETF RFC 6265. From the security perspective, the interest on this header lies on the 
“session cookies”, i.e., those cookies that are set from the server side with the purpose 
of establishing a “session” between client and server (the stateless HTTP protocol 
was devised without any built-in session mechanism). In principle, cookies can be 
sent from the server to the browser without any particular security risk, unless they 
are session cookies. These cookies constitute a major target of many web application 
attacks, and therefore, we have tackled their study as part of the current research. 

In order to prevent session hijacking and other web attacks that usually proceed 
through Cross Site Scripting or MITM attacks, it is generally agreed that session 
cookies should, at least, carry the directives “HttpOnly”, for both HTTP and HTTPS 
sites, and “Secure”, for HTTPS sites. HttpOnly offers protection against cookies being 



361

accessed from client-side scripts (and therefore stolen under XSS attacks) and the 
Secure flag prevents the cookies from being captured through an unintended HTTP 
connection.

However, not all cookies need to be protected by HttpOnly or Secure flags, only 
session ones. Given the fact that session cookies need not carry any flag or follow any 
rules that distinguish them from non-session cookies, we have tried to tell them apart, 
and therefore assess the presence of the mentioned flags, by parsing the Set-Cookie 
value and search there for the token “sess” (case insensitively). While this is far from 
being a satisfactory criterion, our research shows that most of “highly probable” 
session cookies can be identified this way. Table 5 shows most frequent cookie names 
observed in the responses obtained from our data set:

TABLE 5. MOST COMMON COOKIE NAMES

Cloud Flare ID cookie, __cfuid, cannot be considered properly as a web site session 
cookie (and indeed does not meet our criteria), while PHP sessions, ASP.NET sessions 
and Java based sessions are identified using this “sess” token technique. Taking all 
together, we can assume that 53.6% of all cookies received from server side are 
properly identified as being, or not, a session cookie. A further inspection analysing 
the 250 most popular cookie names proved that the “sess” token technique was enough 
to tell apart session cookies from ordinary cookies, up to that level of “cookie name 
popularity”.

Our results show that, regarding HTTP sites, about 49.4% of them set a session cookie 
within the response to our first request, but 55.4% of those cookies do not set the 
HttpOnly flag. Regarding HTTPS sites, 42.7% do not set HttpOnly flag and up to 
80.7% of them do not make use of the Secure flag. The following graphs exhibit the 
same pattern found in other security headers: HTTPS sites and popular sites seem to 
be more security concerned than HTTP or less popular sites.

Cookie name

__cfuid

PHPSESSID

ASP.NET_SessionId

JSESSIONID

Frequency 

24.3%

20.3%

4.5%

2.5%



362

FIGURE 6. SESSION COOKIES. HTTPONLY DIRECTIVE AS A FUNCTION OF WEBSITE POPULARITY

FIGURE 7. SESSION COOKIES. SECURE DIRECTIVE AS A FUNCTION OF WEBSITE POPULARITY

Finally, the “SameSite” cookie attribute recently implemented by Chrome and Opera, 
but still lacking in all other browsers, is an interesting flag currently defined under 
IETF draft (2016). It helps prevent Cross Site Request Forgery and cookie hijacking 
by instructing the browser not to send a cookie with that attribute to any request other 
than same-site requests. Although a very promising attribute, given its novelty and 
lack of widespread implementation, it is understandable that only 0.05% of HTTPS 
sites and 0.01% of HTTP sites make use of the flag.



363

7) X-Content-Type-Options Header
This header was defined to protect browsers from MIME sniffing vulnerabilities, by 
which an attacker may trick the browser into executing content that was not meant 
to be executed by the web application. These kinds of attacks make use of the fact 
that, under some circumstances, browsers do not follow the MIME type indicated in 
the Content-Type header. It is implemented by all major browsers, after Microsoft 
introduced it in IE8. The only allowed directive for this header is “nosniff”. 

The results follow the same pattern observed in other security headers: HTTPS sites 
set X-Content-Type-Options more often that HTTP ones (roughly, 16% vs 8%) and 
popular web sites do it also more often than less popular ones, as shown in the next 
figure:

FIGURE 8. X-CONTENT-TYPE-OPTIONS ADOPTION 
RATE AS A FUNCTION OF WEBSITE POPULARITY

Helme (2017) reports an adoption rate of 11.6%, whereas April (2017) finds 9.4%, 
global rates. 

C. Information Revealing Headers

1) Server Header (and other related server-side headers)
The Server header, defined as part of the RFC 7231 for HTTP/1.1 protocol, is a server-
side header originally devised to inform a browser about software used in the web 
application. Although it is not mandatory, it is issued by most web sites (according to 
our scanning results, more than 90% of sites set this header). It typically contains the 
name and version of the web server on which the web application is running.



364

By itself, the presence of this header as part of an HTTP response does not pose any 
security thread. However, it may help an attacker to easily obtain the web server name, 
version and additional information, for example, the name of the CMS supporting the 
web application. There are currently many “fingerprinting” tools that can be used to 
obtain that information, regardless of the presence of the Server header. They include 
well known utilities like command line command nmap, dedicated tool httprint or 
web utilities like Netcraft that can reveal valuable information to any attacker willing 
to make use of known vulnerabilities and their corresponding exploits. 

The interest of this header from the point of view of the current research is twofold: on 
the one hand, the Server header provides fast and valuable information to those attacks 
that rely on large scale Internet web site scanning to find potential victims. On the 
other hand, we want to study statistical correlation between this header and other web 
site variables, specifically domain popularity and protocol (HTTP / HTTPS) in order 
to help obtain a more accurate picture of the security of the sites we have analysed.

It should be taken into account that other HTTP headers, besides Server, can carry 
information regarding web server and other relevant software. In particular, we 
have taken into account the following additional headers: X-Powered-By, X-AspNet-
Version, X-AspNetMvc-Version and X-Varnish. We have combined the information 
carried by these headers, if present, with the one in the Server header, nearly always 
present, in order to try to find the web server name and version. The results are shown 
in next figure.

FIGURE 9. WEB SERVER INFORMATION AS A FUNCTION OF WEBSITE POPULARITY



365

From last figure it is clearly appreciated two tendencies: a) HTTPS sites tend to be 
more restrictive than HTTP served sites on the information they provide, at least 
regarding Server and related headers, and b) the more popular a given domain is, the 
less information it will probably leak. The overall picture, however, shows that a huge 
amount of Internet web sites (at least, over 85% of them) expose their web server info 
through their HTTPS headers. Our statistics indicates that, within those sites with 
recognizable web server, most popular web server is Apache HTTP server (46% of 
sites) followed by nginx (38% of sites) and IIS (14%). 

Another common header, X-Powered-By header, appears in 48% of responses from 
sites and typically (66% of cases) contains the PHP version used to develop the web 
site.

2) Date Header
This header, defined as part of HTTP/1.1 specification, RFC 7231, contains the date 
and time at which the response message was originated. In our research this header 
is set in over 99% of all responses. It is, in fact, the most common header seen in 
responses. Although it is not related to any significant security attack, server-side date 
and time play an important role as part of the logging information needed to analyse 
security incidents (see, for example, Prodromou 2016). Inaccurate timestamps will 
yield unreliable logging records, and therefore making then inappropriate for forensics 
tasks. 

We see the general trends observed previously: a) HTTPS sites seem to run on more 
precisely configured servers than HTTP ones and b) the more popular a site is, the 
more secure it tends to be configured.



366

FIGURE 10. SITES THAT SHOW TIME OFFSET IN DATE 
RESPONSE HEADER AS A FUNCTION OF WEBSITE POPULARITY

3) Referer and Referer-Policy Headers
The Referer -sic- header, specified by RFC7231 allows the browser to inform the web 
server to which the request is made about the URI from where the user made that 
request. It is meant to provide information that can be processed on the server side 
for logging or commercial analysis, for example, getting to know where customers 
typically come from when reaching a given site. This header is also commonly used 
as a key component of web tracking technologies. 

In principle, Referer header poses a privacy concern, not a security one, since it reveals 
information to a third party that a user might not want to be revealed. Sometimes, 
however, a URL may carry sensitive information, for example, a session token or a 
capability indicator [Cap2014], and under such circumstances the Referer header may 
pose a security risk. Both, privacy and possible security risks, have led to the proposal 
of a Referrer-Policy header (see W3C Editor’s draft at 2017). This header, currently 
implemented by all major browsers, allows a website to control the information 
carried by the Referer header in a rather fine-grained manner. It defines up to eight 
different directives. 

Our scanning database indicates that Referrer-Policy header is scarcely implemented. 
Only 0.05% of HTTP responses, and 0.33% of HTTPS responses, contain some form 
of a valid Referrer-Policy. The distribution of the different policies can be seen in 
Table 6.



367

TABLE 6. REFERER DIRECTIVES

Finally, the P3P header, related to users’ privacy settings, was not included as part of 
this study since it is not implemented by any major browser other than Microsoft IE 
and Edge. However, it is still being issued by 7.5% of the sites (6.9% of HTTP sites 
and 8.4% of HTTPS ones).

5. Conclusions

We have presented a new analysis of implementation rate in Alexa’s top one million 
websites of web security policies based on HTTP response headers. A careful data 
gathering process was carried out to collect HTTP response headers from four different 
requests for each domain in the list: http://domain, http://www.domain, https://domain 
and https://www.domain. Redirections were followed. HTTPS issues were examined, 
finding in particular that a sizeable number of sites, 29.1% of all HTTPS requests 
made, exhibit some incorrect TLS configuration. They are typically X.509 certificate 
errors, as the leading causes for TLS misconfiguration are name mismatching and 
verification errors (self-signed certificates, untrusted CA’s or expired certificates). 
We also compared HTTP response headers obtained from HTTP/1.1 and HTTP/2 
equivalent requests and found that, besides some connection related headers, response 
headers show no significant differences.

We repeatedly showed that security policies based on HTTP response headers are 
always far more common in HTTPS websites that in HTTP sites. Those policies are 
also noticeably more commonly implemented among highly popular sites than not 
so popular ones. In fact, for all security headers analysed here, when implementation 
rates are depicted against website popularity the resulting curve follows an exponential 
decline pattern. 

Referrer-Policy Directives

no-referrer

no-referrer-when-downgrade

origin

origin-when-cross-origin

same-origin

strict-origin

strict-origin-when-cross-origin

unsafe-URL

HTTP Requests

26.97%

23.63%

14.32%

11.46%

5.97%

5.01%

7.64%

0%

HTTPS Requests

14.86%

29.25%

7.06%

17.73%

9.18%

2.87%

10.77%

0%



368

In particular, we have found that HTTP Strict Transport Security policy is implemented 
in about 38% among top one thousand HTTPS sites, but only 17.5% considering all 
top one million websites. Content Security Policy, despite its powerful prevention 
capability against Cross Site Scripting and other vulnerabilities, remains poorly 
implemented at a global 1.6% among all one million websites. HTTPS sites show 
a markedly larger adoption rate, 3.4%, whereas HTTP sites hardly implement this 
policy, only 0.4% of them. Session cookies were also analysed and we found that 
about 50% of sites do not set their HttpOnly flag (55.4 % of HTTP sites and 42.7% of 
HTTPS sites) and and the Secure directive is issued for the session cookies in about 
19.3% of all HTTPS sites. Although not so relevant as these headers, other security-
related response headers were analysed (X-Frame-Options, X-XSS-Protection and 
X-ContentType-Options). We also analysed information leakage from web servers 
through their Server and other related response headers and, again, we found that 
information leakage is more common among less popular and HTTP sites than in 
highly popular and HTTPS sites.

All in all, security policies based on HTTP headers remain low. They are slightly 
increasing when compared to the figures reported by previous researches during 
2017 (Helme 2017, April 2017), but still well below satisfactory rates. Notably 
higher implementation rates observed in the most popular sites suggests that security 
awareness could be influenced by factors like business size. Alternatively, it may be 
argued that security-aware websites tend to thrive better. 

6. Future Work

The authors plan to expand the current research in several ways. The survey offers a 
picture of certain web security policies implemented by the top one million websites 
at a given time (September 2017) and a periodical repetition of the scanning process 
will be interesting, as it will show how the adoption of these policies are evolving. 
Following similar initiatives like the ones by Mozilla Observatory and Scott Helme, 
the authors plan to assign a “global” scoring (e.g., from A to F) for each website 
and generate the corresponding global statistics and their correlation to HTTPS and 
site popularity ranking. However, our initial work on this area shows that it is far 
from obvious how to assign relative weights to each of the analysed HTTP headers 
and we firmly believe that further work is needed, taking into account, at least, web 
vulnerability prevalence statistics.

Additionally, we are currently exploring the possibility of considering more variables 
in our work, like website country and Content Distribution Network usage and how 



369

it relates to web security policies based on HTTP response headers. Finally, we deem 
interesting to study Subresource Integrity current adoption resources.

7. References

Alexa’s Top One Million Websites, https://s3.amazonaws.com/alexa-static/top-1m.csv.zip.

Li Chang, Hsu-Chun Hsiao, Wei Jeng, Tiffany Hyun-Jin Kim and Wei-Hsi Lin, “Security Implications of 
Redirection Trail in Popular Websites Worldwide”, in Proceedings of the 26th International Conference on 
World Wide Web (WWW ’17), 2017, pages 1491-1500. International World Wide Web Conferences Steering 
Committee, Republic and Canton of Geneva, Switzerland. DOI: https://doi.org/10.1145/3038912.3052698.

Cisco Umbrella 1 Million, https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/.

Scott Helme, “I am giving up on HPKP”, blog post, 24 August 2017, https://scotthelme.co.uk/im-giving-up-on-
hpkp/.

Scott Helme, “Alexa Top 1 Million Analysis - August 2017”, blog post, 29 August 2017, https://scotthelme.
ghost.io/alexa-top-1-million-analysis-aug-2017/.

Scott Helme, “Daily scans of the top one million sites”, https://scans.io/study/scott-top-one-million.

Httprint web server fingerprinting tool, http://www.net-square.com/httprint.html.

Hyper: HTTP/2 for Python, https://python-hyper.org/en/latest/.

Internet Engineering Task Force, “HTTP Header Field X-Frame-Options”, IETF Informational, RFC 7034, 
October 2013, https://tools.ietf.org/html/rfc7034.

Internet Engineering Task Force, “HTTP State Management Mechanism”, IETF Standard, RFC 6265, April 
2011, https://tools.ietf.org/html/rfc6265.

Internet Engineering Task Force, “HTTP Strict Transport Security (HSTS)”, IETF Standard, RFC 6797, 
November 2012, https://tools.ietf.org/html/rfc6797.

Internet Engineering Task Force, “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”, IETF 
Standard, RFC 7231, June 2014, https://tools.ietf.org/html/rfc7231.

Internet Engineering Task Force, “Public Key Pinning Extension for HTTP”, IETF Standard, RFC 7469, April 
2015, https://tools.ietf.org/html/rfc7469.

Internet Engineering Task Force, “Same-Site Cookies”, IETF Internet-Draft Standard, 20 June 2016, https://
tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-00.

April King, “Analysis of the Alexa Top 1M sites (June 2017)”, 13 June 2017, https://pokeinthe.io/2017/06/13/
state-of-security-alexa-top-one-million-2017-06/.

Let’s Encrypt - Free SSL/TLS Certificates, https://letsencrypt.org/.

Majestic Million database, https://blog.majestic.com/development/majestic-million-csv-daily/.

Mozilla HTTP Observatory Website, https://mozilla.github.io/http-observatory-website/.

Mozilla Included CA Certificate List, https://wiki.mozilla.org/CA/Included_Certificates.

Mozilla Intermediate Certificates, https://wiki.mozilla.org/CA/Intermediate_Certificates.



370

Netcraft Site Report, http://toolbar.netcraft.com/site_report.

Nmap, https://nmap.org/.

OWASP, Clickjacking Defence Cheat Sheet, https://www.owasp.org/index.php/Clickjacking_defence_Cheat_
Sheet.

Chris Palmer, “Intent to deprecate and remove HPKP”, forum post, 27 October 2017, https://groups.google.
com/a/chromium.org/forum/#!msg/blink-dev/he9tr7p3rZ8/eNMwKPmUBAAJ.

Agathoklis Prodromou, “Using logs to investigate a web application attack”, blog post, 11 May 2016, https://
www.acunetix.com/blog/articles/using-logs-to-investigate-a-web-application-attack/.

Requests: HTTP for humans. v2.18.4 Python library, http://docs.python-requests.org/en/master/.

Ivan Ristic, “Is HTTP Public Key Pinning dead?”, blog post, 6 September 2016, https://blog.qualys.com/
ssllabs/2016/09/06/is-http-public-key-pinning-dead.

Gustav Rydstedt, Elie Bursztein, Dan Boneh and Collin Jackson, “Busting Frame Busting: a Study of 
Clickjacking Vulnerabilities at Popular Sites”, in IEEE Oakland Web 2.0 Security and Privacy (W2SP 
2010), https://crypto.stanford.edu/~dabo/pubs/papers/framebust.pdf.

[IO] Security Headers Website, https://securityheaders.io/.

Aditya Sood and Richard Enbody, “The state of HTTP declarative security in online banking websites”, in 
Computer Fraud & Security, Volume 2011, Issue 7, July 2011, pages 11-16. DOI: https://doi.org/10.1016/
S1361-3723(11)70073-2.

Usage of HTTP/2 for websites, W3Techs, https://w3techs.com/technologies/details/ce-http2/all/all.

Michael Weissbacher, Tobias Lauinger and William Robertson, “Why Is CSP Failing? Trends and Challenges in 
CSP Adoption”, in Research in Attacks, Intrusions and Defenses. RAID 2014. Lecture Notes in Computer 
Science, vol 8688. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-11379-1_11.

World Wide Web Consortium, “Content Security Policy 1.0” (CSP1), W3C Working Group Note, 19 February 
2015, discontinued, https://www.w3.org/TR/CSP1/.

World Wide Web Consortium, “Content Security Policy Level 2” (CSP2), W3C Recommendation, 15 December 
2016, https://www.w3.org/TR/CSP2.

World Wide Web Consortium, “Content Security Policy Level 3” (CSP3), W3C Working Draft, 13 September 
2016, https://www.w3.org/TR/CSP/.

World Wide Web Consortium, “Good Practices for Capability URLs”, W3C First Public Working Draft, 18 
February 2014, https://www.w3.org/TR/capability-urls/.

World Wide Web Consortium, “Referrer Policy”, W3C Candidate Recommendation, 26 January 2017, https://
www.w3.org/TR/referrer-policy/.

World Wide Web Consortium, “Subresource Integrity”, W3C Recommendation, 23 June 2016, https://www.
w3.org/TR/SRI/.

Ming Ying and Shu Qin Li, “CSP adoption: current status and future prospects”, in Security and Communication 
Networks, Vol 9, Issue 17, 25 November 2016, pages 4557-4573. DOI: https://doi.org/10.1002/sec.1649.




