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On the Effectiveness of 
Machine and Deep Learning 
for Cyber Security

Abstract: Machine learning is adopted in a wide range of domains where it shows its 
superiority over traditional rule-based algorithms. These methods are being integrated 
in cyber detection systems with the goal of supporting or even replacing the first level 
of security analysts. Although the complete automation of detection and analysis is 
an enticing goal, the efficacy of machine learning in cyber security must be evaluated 

Giovanni Apruzzese
Department of Engineering
‘Enzo Ferrari’
University of Modena 
and Reggio Emilia
Modena, Italy
giovanni.apruzzese@unimore.it

Luca Ferretti
Department of Engineering
‘Enzo Ferrari’
University of Modena 
and Reggio Emilia
Modena, Italy
luca.ferretti@unimore.it

Mirco Marchetti
Department of Engineering
‘Enzo Ferrari’
University of Modena 
and Reggio Emilia
Modena, Italy
mirco.marchetti@unimore.it

Michele Colajanni
Department of Engineering
‘Enzo Ferrari’
University of Modena 
and Reggio Emilia
Modena, Italy
michele.colajanni@unimore.it

Alessandro Guido
Department of Engineering
‘Enzo Ferrari’
University of Modena 
and Reggio Emilia
Modena, Italy
alessandro.guido@unimore.it

2018 10th International Conference on Cyber Conflict
CyCon X: Maximising Effects
T. Minárik, R. Jakschis, L. Lindström (Eds.)
2018 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal 
use within NATO and for personal or educational use when for non-profit or 
non-commercial purposes is granted providing that copies bear this notice 
and a full citation on the first page. Any other reproduction or transmission 
requires prior written permission by NATO CCD COE.



372

1. IntroductIon

The appeal and pervasiveness of machine learning (ML) is growing. Existing methods 
are being improved, and their ability to understand and answer real issues is highly 
appreciated. These achievements have led to the adoption of machine learning in 
several domains, such as computer vision, medical analysis, gaming and social media 
marketing [1]. In some scenarios, machine learning techniques represent the best 
choice over traditional rule-based algorithms and even human operators [2]. This 
trend is also affecting the cyber security field where some detection systems are being 
upgraded with ML components [3]. Although devising a completely automated cyber 
defence system is yet a distant objective, first level operators in Network and Security 
Operation Centres (NOC and SOC) may benefit from detection and analysis tools 
based on machine learning. This paper is specifically addressed to security operators 
and aims to assess the current maturity of these solutions, to identify their main 
limitations and to highlight some room for improvement.

Our study is based on an extensive review of the literature and on original experiments 
performed on real, large enterprises and network traffic. Other academic papers 
compare ML solutions for cyber security by considering one specific application (e.g.: 
[4], [3], [5]) and are typically oriented to Artificial Intelligence (AI) experts rather 
than to security operators. In the evaluation, we exclude the commercial products 
based on machine learning (or on the abused AI term) because vendors do not reveal 
their algorithms and tend to overlook issues and limitations. First, we present an 
original taxonomy of machine learning cyber security approaches. Then, we map the 
identified classes of algorithms to three problems where machine learning is currently 
applied: intrusion detection, malware analysis, spam and phishing detection. Finally, 
we analyse the main limitations of existing approaches. Our study highlights pros and 
cons of different methods, especially in terms of false positive or false negative alarms. 
Moreover, we point out a general underestimation of the complexity of managing ML 
architectures in cyber security caused by the lack of publicly available and labelled 

with the due diligence. We present an analysis, addressed to security specialists, of 
machine learning techniques applied to the detection of intrusion, malware, and spam. 
The goal is twofold: to assess the current maturity of these solutions and to identify 
their main limitations that prevent an immediate adoption of machine learning cyber 
detection schemes. Our conclusions are based on an extensive review of the literature 
as well as on experiments performed on real enterprise systems and network traffic.

Keywords: machine learning, deep learning, cyber security, adversarial learning
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data for training, and by the time required for fine-tuning operations in a domain 
characterized by continuous change. We also consider recent results emphasizing the 
effectiveness of adversarial attacks [6] [5] in evading ML detectors. The evidenced 
drawbacks pave the way to future improvements that ML components require before 
being fully adopted in cyber defence platforms.

This paper is structured as follows. Section 2 proposes our original taxonomy of ML 
algorithms applied to cyber security. Section 3 outlines the three classes of cyber 
security problems considered in this paper and Section 4 compares and evaluates ML 
solutions for cyber security. Section 5 concludes the paper with some final remarks. 

2. classIfIcatIon of machIne learnIng 
algorIthms for cyber securIty

Machine learning includes a large variety of paradigms in continuous evolution, 
presenting weak boundaries and cross relationships. Furthermore, different views and 
applications may lead to different classifications. Hence, we cannot refer to one fully 
accepted taxonomy from literature, but we prefer to propose an original taxonomy 
able to capture the differences among the myriad of techniques that are being applied 
to cyber detection, as shown in Figure 1. This taxonomy is specifically oriented to 
security operators and avoids the ambitious goal of presenting the ultimate classification 
that can satisfy all AI experts and application cases. The first discriminant evidenced 
in Figure 1 is between the traditional ML algorithms, which today can be referred 
to as Shallow Learning (SL), in opposition to the more recent Deep Learning 
(DL). Shallow Learning requires a domain expert (that is, a feature engineer) who 
can perform the critical task of identifying the relevant data characteristics before 
executing the SL algorithm. Deep Learning relies on a multi-layered representation 
of the input data and can perform feature selection autonomously through a process 
defined representation learning.
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1 For a detailed list of existing ML algorithms, see: https://cran.r-project.org/web/views/MachineLearning.
html

FIGURE 1. CLASSIFICATION OF ML ALGORITHMS FOR CYBER SECURITY APPLICATIONS.

SL and DL approaches can be further characterized by distinguishing between 
supervised and unsupervised algorithms. The former techniques require a training 
process with a large and representative set of data that have been previously classified 
by a human expert or through other means. The latter approaches do not require a pre-
labelled training dataset. In this section, we consider and compare the most popular 
categories of ML algorithms, which appear as the leaves of the classification tree in 
Figure 1. We remark that each category can include dozens of different techniques1.
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A. Shallow Learning

1) Supervised SL algorithms

• Naïve Bayes (NB). These algorithms are probabilistic classifiers which make 
the a-priori assumption that the features of the input dataset are independent 
from each other. They are scalable and do not require huge training datasets 
to produce appreciable results.

• Logistic Regression (LR). These are categorical classifiers that adopt a 
discriminative model. Like NB algorithms, LR methods make the a-priori 
independency assumption of the input features. Their performance is highly 
dependent on the size of the training data.

• Support Vector Machines (SVM). These are non-probabilistic classifiers 
that map data samples in a feature space with the goal of maximizing the 
distance between each category of samples. They do not make any assumption 
on the input features, but they perform poorly in multi-class classifications. 
Hence, they should be used as binary classifiers. Their limited scalability 
might lead to long processing times.

• Random Forest (RF). A random forest is a set of decision trees, and 
considers the output of each tree before providing a unified final response. 
Each decision tree is a conditional classifier: the tree is visited from the top 
and, at each node, a given condition is checked against one or more features 
of the analysed data. These methods are efficient for large datasets and excel 
at multiclass problems, but deeper trees might lead to overfitting. 

• Hidden Markov Models (HMM). These model the system as a set of states 
producing outputs with different probabilities; the goal is to determine the 
sequence of states that produced the observed outputs. HMM are effective 
for understanding the temporal behaviour of the observations, and for 
calculating the likelihood of a given sequence of events. Although HMM 
can be trained on labelled or unlabelled datasets, in cyber security they have 
mostly been used with labelled datasets.

• K-Nearest Neighbour (KNN). KNN are used for classification and can be 
used for multi-class problems. However, both their training and test phase 
are computationally demanding as to classify each test sample, they compare 
it against all the training samples.

• Shallow Neural Network (SNN). These algorithms are based on neural 
networks, which consist in a set of processing elements (that is, neurons) 
organized in two or more communicating layers. SNN include all those types 
of neural networks with a limited number of neurons and layers. Despite the 
existence of unsupervised SNN, in cyber security they have mostly been 
used for classification tasks.
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2) Unsupervised SL algorithms

• Clustering. These group data points that present similar characteristics. Well 
known approaches include k-means and hierarchical clustering. Clustering 
methods have a limited scalability, but they represent a flexible solution 
that is typically used as a preliminary phase before adopting a supervised 
algorithm or for anomaly detection purposes. 

• Association. They aim to identify unknown patterns between data, making 
them suitable for prediction purposes. However, they tend to produce an 
excessive output of not necessarily valid rules, hence they must be combined 
with accurate inspections by a human expert.

B. Deep Learning
All DL algorithms are based on Deep Neural Networks (DNN), which are large neural 
networks organized in many layers capable of autonomous representation learning.

1) Supervised DL algorithms

• Fully-connected Feedforward Deep Neural Networks (FNN). They are 
a variant of DNN where every neuron is connected to all the neurons in 
the previous layer. FNN do not make any assumption on the input data and 
provide a flexible and general-purpose solution for classification, at the 
expense of high computational costs.

• Convolutional Feedforward Deep Neural Networks (CNN). They are a 
variant of DNN where each neuron receives its input only from a subset of 
neurons of the previous layer. This characteristic makes CNN effective at 
analysing spatial data, but their performance decreases when applied to non-
spatial data. CNN have a lower computation cost than FNN.

• Recurrent Deep Neural Networks (RNN). A variant of DNN whose 
neurons can send their output also to previous layers; this design makes them 
harder to train than FNN. They excel as sequence generators, especially their 
recent variant, the long short-term memory.

2) Unsupervised DL algorithms

• Deep Belief Networks (DBN). They are modelled through a composition of 
Restricted Boltzmann Machines (RBM), a class of neural networks with no 
output layer. DBN can be successfully used for pre-training tasks because 
they excel in the function of feature extraction. They require a training 
phase, but with unlabelled datasets.
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• Stacked Autoencoders (SAE). They are composed by multiple 
Autoencoders, a class of neural networks where the number of input and 
output neurons is the same. SAE excel at pre-training tasks similarly to 
DBN, and achieve better results on small datasets.

3. aPPlIcatIons of machIne learnIng 
algorIthms to cyber securIty

We consider the three areas where most cyber ML algorithms are finding application: 
intrusion detection, malware analysis, and spam detection. An outline of each field is 
presented below.

Intrusion detection aims to discover illicit activities within a computer or a network 
through Intrusion Detection Systems (IDS). Network IDS are widely deployed in 
modern enterprise networks. These systems were traditionally based on patterns 
of known attacks, but modern deployments include other approaches for anomaly 
detection, threat detection [7] and classification based on machine learning. Within the 
broader intrusion detection area, two specific problems are relevant to our analysis: 
the detection of botnets and of Domain Generation Algorithms (DGA). A botnet 
is a network of infected machines controlled by attackers and misused to conduct 
multiple illicit activities. Botnet detection aims to identify communications between 
infected machines within the monitored network and the external command-and-
control servers. Despite many research proposals and commercial tools that address 
this threat, several botnets still exist. DGA automatically generate domain names, 
and are often used by an infected machine to communicate with external server(s) by 
periodically generating new hostnames. They represent a real threat for organizations 
because, through DGA which relies on language processing techniques, it is possible 
to evade defences based on static blacklists of domain names. We consider DGA 
detection techniques based on ML.

Malware analysis is an extremely relevant problem because modern malware can 
automatically generate novel variants with the same malicious effects but appearing 
as completely different executable files. These polymorphic and metamorphic features 
defeat traditional rule-based malware identification approaches. ML techniques can be 
used to analyse malware variants and attributing them to the correct malware family.

Spam and phishing detection includes a large set of techniques aimed at reducing 
the waste of time and potential hazard caused by unwanted emails. Nowadays, 
unsolicited emails, namely phishing, represent the preferred way through which an 
attacker establishes a first foothold within an enterprise network. Phishing emails 
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include malware or links to compromised websites. Spam and phishing detection is 
increasingly difficult because of the advanced evasion strategies used by attackers to 
bypass traditional filters. ML approaches can improve the spam detection process.

TABLE 1. APPLICATION OF ML TO CYBER SECURITY PROBLEMS.

In Table 1 we report the main ML algorithms that have been proposed to address the 
previously identified cyber security problems. In this table, rows report the family 
of algorithms presented in Section 2, while columns denote cyber issues. Each cell 
indicates which ML algorithms are used for each problem; empty cells denote that, to 
the best of our knowledge, there is no proposal for that class of problems. From this 
table, it emerges that SL algorithms are applied to all considered problems. Supervised 
DL algorithms find wide application to malware analysis, less to intrusion detection; 
spam detection relies only on unsupervised DL algorithms. Despite its relatedness to 
natural language processing [2], no DL algorithm is applied to DGA detection. As 
expected, the overall number of algorithms based on DL is considerably smaller than 
those based on SL. Indeed, DL proposals based on huge neural networks are more 
recent than SL approaches. This gap opens many research opportunities.

Finally, we highlight a significant difference among supervised and unsupervised 
approaches: the former algorithms are used for classification purposes and can 
implement complete detectors; the latter techniques perform ancillary activities [35]. 
Unsupervised SL algorithms are often used for grouping data with similar characteristics 
independently of predefined classification criteria, and excel at identifying useful 
features whenever the data to be analysed present high dimensionality [16].
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4. eValuatIon

In this section we present seven issues that must be considered before deciding whether 
to apply ML algorithms in NOC and SOC. We can anticipate that, at the current 
state-of-the-art, no algorithm can be considered fully autonomous with no human 
supervision. We substantiate each issue through experimental results from literature 
or original experiments performed on large enterprises. We begin by describing the 
testing environments of our experiments, and the metrics considered for evaluation. 
The experiments focus on DGA Detection and Network Intrusion Detection, and 
leverage two ML algorithms: Random Forest and Feedforward Fully Connected Deep 
Neural Network.

For DGA Detection, we compose two labelled training datasets containing both DGA 
and non-DGA domains. The former dataset contains DGA created through known 
techniques, while the latter contains DGA created using more recent approaches. 
Non-DGA domains are randomly chosen among the Cisco Umbrella top-1 million. 
We report the meaningful metrics of the training datasets in Table 2. Moreover, we 
build a testing dataset of 10,000 domains extracted evenly from each of the training 
datasets. We also rely on a real and unlabelled dataset composed of almost 20,000 
domains contacted by a large organization. The features extracted for this dataset are: 
n-gram normality score [36]; meaningful characters ratio [36]; number-to-character 
ratio; vowel-to-consonant ratio; and domain length. These datasets are used to train 
and test a self-developed Random Forest classifier composed of 100 decision trees 
leveraging the CART (classification and regression tree) algorithm.

TABLE 2. TRAINING DATASETS FOR DGA DETECTION EXPERIMENTS.

For Network Intrusion Detection, we use three labelled real training datasets 
composed of benign and malicious network flows2 collected in a large organization 
of nearly 10,000 hosts. The labels are created by flagging as malicious those flows 
that raised alerts by the enterprise network IDS and reviewed by a domain expert. 
Meaningful metrics of these training datasets are reported in Table 3. We also generate 
a testing dataset of 50,000 flows evenly extracted among the training datasets. The 
considered features for these datasets include: source/destination IP address, source/
destination port, number of incoming/outgoing bytes and packets, TCP flags, protocol 
used, duration of the flow and list of alerts raised. These datasets are used to test 
and train two self-developed classifiers, one based on Random Forests and one on 

2 Cisco Netflow: https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

Dataset

1

2

DGA technique

Well-known

Well-known and recent

DGA count

21,355

37,673

non-DGA count

20,227

8,120
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Feedforward Fully-connected Deep Neural Network. Different topologies have been 
considered for each algorithm. The RF is composed by 100 decision trees leveraging 
the CART algorithm. For the FNN, the overall number of neurons ranges from 128 
to 16,384, distributed between 2 to 16 layers; the hidden layers leverage the ReLU 
activation function, whereas the output layer uses a sigmoid activation function.

TABLE 3. TRAINING DATASETS FOR NETWORK INTRUSION DETECTION EXPERIMENTS. 

The quality of each classifier is measured through common performance metrics, 
namely Precision, Recall, F1-score, which are computed as follows:

where TP, FP, and FN denote true positives, false positives, and false negatives, 
respectively. For completeness, we consider a true positive to be a correct detection 
of a malicious sample. Precision indicates how much a given approach is likely to 
provide a correct result. Recall is used to measure the detection rate. The F1-score 
combines Precision and Recall into a single value. We do not rely on Accuracy3 

because, in a real organization, the number of legitimate events is several orders of 
magnitude greater than illegitimate events. Hence, all the Accuracy values are close 
to 1 and these results prevent capturing the true effectiveness of a classifier. Finally, 
to reduce the possibility of biased results, each evaluation metric is computed after 
performing 10-fold cross validation.

A. Shallow vs Deep Learning
Deep Learning is known to outperform Shallow Learning in some applications, 
such as computer vision [2]. This is not always the case for cyber security where 
some well configured SL algorithms may prevail, even given the DL proposals are 
scarce with respect to SL techniques in this domain. Just to give an example, we 
experimentally compare the performance of the two self-developed classifiers for 
Network Intrusion Detection, one based on RF (Shallow Learning) and another based 
on FNN (Deep Learning). Both are trained with the third dataset described in Table 3 
and tested on the network intrusion detection testing dataset. To obtain more refined 
results, we repeat the training and test phase of these classifiers multiple times using 
different topologies. In Table 4, we show the classification results achieved by each 
method; for the FNN we report the results obtained by the best topology consisting 

3 Accuracy =  , where TN denotes true negatives.

Dataset

1

2

3
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in 1.024 neurons spread across 4 hidden layers. The RF classifier performed better 
than the FNN, with an F1-score of nearly 0.8, against the 0.6 obtained by the FNN. 
Our takeaway is that security administrators should not be charmed by the alluring 
neuronal multi-layer approach offered by Deep Learning, as some of these methods 
might still be immature for cyber security.

TABLE 4. COMPARISON BETWEEN DL AND SL CLASSIFIERS.

B. General vs specific detectors
Products based on machine learning are often promoted by vendors as catch-all 
solutions to a broad array of cyberattacks. However, unbiased experimental results 
show that ML algorithms may provide superior performance when they focus on 
specific threats instead of trying to detect multiple threats at once. We devise multiple 
intrusion detection systems based on the self-developed RF classifiers for network 
intrusion detection, each focusing on a specific type of attack, such as buffer overflows, 
malware infection, DoS. The training dataset for each classifier is based on the third 
dataset presented in Table 3. We train and test each classifier, and then compare their 
classification results with the classifier described in the first row of Table 4 that is our 
baseline. Table 5 shows the Precision, Recall and F1-score of the six classifiers that 
obtained the best results, alongside the baseline reported in the bottom row. These 
attack-specific classifiers obtain promising results on real traffic data with F1-scores 
of over 0.95, while the ‘general-purpose’ classifier performs significantly poorly. We 
conclude that entrusting a single ML detector to identify malicious flows is an enticing 
but as yet unfeasible goal. On the other hand, by having multiple detectors, each 
focusing on one attack type, it is possible to produce a defensive scheme with superior 
detection capabilities.

TABLE 5. CLASSIFICATION RESULTS FOR ATTACK-SPECIFIC 
CLASSIFIERS AND THE GENERAL CLASSIFIER.

F1-score

0.7985

0.6085

Precision

0.8727

0.7708

Recall

0.736

0.5027

F1-score

0.9953

0.9939

0.9916

0.9753

0.9676

0.9587

0.7985

Precision

0.9938

0.9933

0.9941

0.9953

0.9872

0.9939

0.8727

Recall

0.9969

0.9946

0.9892

0.9586

0.9506

0.9337

0.7360
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C. Vulnerability to adversarial attacks
Competent adversaries use novel strategies to evade detectors based on machine 
learning algorithms [5]. These activities, namely adversarial attacks, may attack the 
integrity, the availability, or the privacy of the target system [6]. Integrity violations 
evade a classification or a clustering algorithm by producing attacks classified as 
licit activities. Availability violations produce a multitude of normal events that are 
classified as an attack thus causing detectors to raise a huge amount of false alarms. 
Privacy violations let the attacker acquire information on the target network by 
exploiting the defensive ML algorithm. Moreover, recent advances in Deep Learning 
led to the development of generative adversarial networks (GAN) [37], which are 
DNN capable of automatically producing adversarial samples against a target ML 
system.

TABLE 6. DETECTION RATES OF THE RF CLASSIFIER AGAINST DIFFERENT DGA TECHNIQUES [36].

To demonstrate the effectiveness of a GAN in evading classifiers we analyse the 
case study of DeepDGA [36]. The authors initially train an RF classifier to detect 
DGA using known datasets, and then show that this classifier identifies DGA with 
good detection rates. Then, they develop a GAN to generate domains that evade such 
classifier. Results are presented in Table 6, where the first ten rows show the detection 
rate against ten real DGA, while the last row denotes the detection rate against samples 
generated by the DeepDGA GAN. We observe that the performance of the classifier 
(always above 0.85, and above 0.96 for nine out of ten DGA) drops below 50% for 
GAN-generated samples. 

DGA method

corebot

cryptolocker

dircrypt

kraken_v2

lockyv2

pykspa

qakbot

ramdo

ramnit

simda

DeepDGA GAN

Recall

1

1

0.99

0.96

0.97

0.85

0.99

0.99

0.98

0.96

0.48
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TABLE 7. DETECTION RATES OF THE RF CLASSIFIER AGAINST DIFFERENT DGA BEFORE AND 
AFTER HARDENING [36].

To counter adversarial attacks, novel proposals introduce the paradigm of adversarial 
learning [6], in which adversarial samples are included in the training dataset to 
harden the ML detector. As an example, authors in [36] demonstrate the advantages 
of adversarial learning by enriching the training set of the classifier with adversarial 
samples produced by the GAN. Table 7 compares the detection rates of the RF classifier 
before and after this hardening process. Cells with a grey background represent the 
DGA for which the detection rate improved after adversarial learning (it should be 
noted that the dataset used for this test is different than that used for the experiments 
reported in Table 6). Detection rates for 8 out of 10 DGA families improved, thus 
showing the validity of adversarial learning.

D. Selection of a machine learning algorithm
Unbiased comparison of the effectiveness of two ML algorithms requires that they 
are both trained on the same training dataset and tested on the same dataset [3]. 
Even though many cyber security proposals rely on few and old public datasets, 
their results are not comparable due to several causes: the two algorithms consider 
different features; one or both algorithms may implement pre-filtering operations 
that alter the training dataset; and they may use a different split between test and 
training dataset. For these reasons, meaningful comparisons between detection 
performance in literature are extremely difficult. For example, papers such as [4] and 
[5] discuss ML methods for two cyber security problems, but they do not consider the 
different training and testing environments of the analysed works. Hence, although 
some solutions achieve higher accuracy than others, it is possible that results change 
significantly under different training settings. Furthermore, there is no guarantee that a 
method performing best on a test dataset confirms its superiority on different datasets. 

DGA method

corebot

dircrypt

qakbot

ramnit

lockyv2

cryptolocker

simda

krakenv2

pykspa

ramdo

Baseline Recall

0.97

0.95

0.94

0.94

0.87

0.87

0.75

0.72

0.67

0.54

Hardened Recall

0.97

0.93

0.94

0.94

0.84

0.88

0.79

0.76

0.71

0.54
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Security administrators should be aware of this issue, and should thoroughly question 
the evaluation methodology before accepting the performance results of different 
machine learning algorithms.

E. False positives and false negatives
The implicit cost of a misclassification in the cyber security domain is a serious 
problem. False positives in malware classification and intrusion detection annoy 
security operators and hinder remediation in case of actual infection. In phishing 
detection, they might cause important, legitimate messages to not be delivered to end 
users. In contrast, failing to detect malware, a network intrusion or a phishing email 
can compromise an entire organization. We explore this problem by considering the 
performance of ML solutions devoted to malware analysis and phishing detection 
[27], while we perform an original experiment for intrusion detection that is oriented 
to detect DGA in a real, large enterprise. 

For malware analysis, we consider the approach in [24] that proposes an original and 
effective method for malware classification. This paper contains a detailed analysis 
and comparison of different ML techniques which were trained and tested on the 
same datasets, thus satisfying the requirements for valid comparison of different 
techniques. Hence, we deem this paper to be a good representation of the state-of-
the-art of ML for determining the family to which a malware sample belongs. The 
evaluation is performed on the DREBIN dataset;4 for large malware families the 
proposed approach, which outperforms all other baselines, obtains an F1-score of 
0.95, whereas for small malware families it achieves an F1-score of 0.89.

For phishing detection, we report the results described in [27] that, to the best of our 
knowledge, is the only paper on phishing email detection which compares different 
ML algorithms against the same comprehensive dataset. Therefore, we consider this 
work as a valid overview of the efficacy of different ML methods. The authors created 
a custom dataset of ~3,000 phishing emails on which several ML classifiers were 
tested: the best results were obtained by RF (lowest false positives) and LR (lowest 
false negatives), obtaining an F1-score of 0.90 and 0.89, respectively. 

The scenario for intrusion detection is different, as modern solutions can achieve 
higher Accuracy scores [3]. Although near-perfect Accuracy may seem an appreciable 
result, the massive amounts of events generated daily in a large enterprise account for 
hundreds to thousands of false positives that need to be manually triaged by security 
operators. We highlight this problem through an original experiment. We consider 
two DGA detectors based on the self-developed Random Forest classifiers trained on 
the first and second datasets of Table 2, respectively. We then validate them on the 
real domain dataset. Results are summarized in Table 8 which presents the number 

4 DREBIN dataset: https://www.sec.cs.tu-bs.de/~danarp/drebin/
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of domains that are flagged as DGA by both classifiers, alongside its percentage on 
the total amount of domains included in the dataset. We can observe that the two 
classifiers obtain comparable detection performances on real traffic data, as they 
both signal about 400 domains. However, manual inspection revealed that they were 
not DGA, hence all the domains flagged as DGAs are actually false positives. As 
anticipated, even a false positive rate of 2% can account to hundreds of false alarms 
in a real organization. 

TABLE 8. PERFORMANCE OF THE DGA DETECTION CLASSIFIERS WHEN USED ON REAL DATA.

Despite these apparently promising results which are well beyond acceptable levels in 
other fields such as image recognition, these approaches are affected by an excessive 
number of false positives and false negatives to be considered for cyber defences 
without human supervision.

F. Re-training issues
A well-known limitation of traditional detection approaches based on static detection 
rules is the need for frequent and continuous updates (e.g., daily updates of antivirus 
definitions). A similar issue also influences advanced ML approaches; reliance on 
outdated training datasets leads to poor detection performance. This is a critical 
problem for all supervised learning approaches requiring labelled training datasets; 
the manual creation of similar datasets is an expensive process because they need to 
be sufficiently large and comprehensive to allow the algorithm to learn the difference 
between the classes. Furthermore, these operations are error prone and may lead 
to incorrect classifications. Finally, most organizations are unwilling to share their 
internal network data. This scenario leads to an overall scarcity of publicly available 
and labelled data for cyber security, thus rendering periodic retraining extremely 
difficult or impossible. 

To show the detrimental effects of obsolete training sets, we perform an experiment 
comparing the performance of two instances of the same self-developed RF classifier 
for DGA detection. The first and second instances are trained with the first and second 
datasets reported in Table 2. Both classifiers are tested against the same synthetic 
domain dataset described in Section 4. We report the results in Table 9, which shows 
the Precision, Recall and F1-score obtained by the two classifiers for DGA detection. 
As expected, the performance of the second classifier is significantly better because 

Training Dataset

Well-known

Well-known and recent
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it obtains an F1-score for DGAs of 0.89 against 0.33. These results demonstrate that 
classifier performances are extremely sensitive to the freshness of the training set.

TABLE 9. PERFORMANCE OF THE DGA DETECTION CLASSIFIERS WHEN TRAINED ON OUTDATED 
AND RECENT DATASETS.

G. Deployment process 
Security solutions based on ML achieve appreciable detection rates only if the training 
dataset is appropriate and the parameters of the algorithms are finely tuned. In most 
scenarios, these operations are still executed empirically and represent a resource 
intensive task that presents several risks. If these steps are not performed rigorously 
and/or training is not based on the right datasets, the results are underwhelming. We 
highlight these issues through a set of ML experiments applied to network intrusion 
detection. The goal is to show the considerably different results achieved by the same 
ML algorithm in different environments where either the number of features or the 
training dataset is changed. To this purpose, we rely on the RF classifier for network 
intrusion detection. We train it using the third dataset reported in Table 3 by choosing 
5, 7, 10 or 12 features, selected through a feature agglomeration process; the testing 
phase is performed on the test dataset. We report the Precision, Recall and F1-score 
for the five sets of features in Table 10, where we observe that the same classifier 
yields different results, especially with regards to its Recall, with values ranging from 
0.57 to 0.74.

TABLE 10. PERFORMANCE OF THE INTRUSION DETECTION CLASSIFIER WHEN TRAINED WITH 
DIFFERENT FEATURES.

Then, we keep the number of features fixed at 12 and we repeat the training process 
two more times by using the first and then the second dataset reported in Table 3, and 
then test them on the same testing dataset. Table 11 reports the Precision, Recall and 
F1-score for the three training datasets. These results confirm that the Recall between 
the best and the worst case may differ by 10% or over.

Features

12

10

7

5

F1-score

0.7985

0.7801

0.7476

0.6920

Precision

0.8727

0.8684

0.8893

0.8724

Recall

0.7361

0.7093

0.6448

0.5734

F1-score

0.3306

0.8999

Training Dataset

Well-known

Well-known and recent

Precision

0.1984

0.9126

Recall

0.9913

0.8875
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TABLE 11. PERFORMANCE OF THE INTRUSION DETECTION CLASSIFIER WHEN TRAINED ON 
DIFFERENT DATASETS.

5. conclusIons

Machine and deep learning approaches are increasingly employed for multiple 
applications and are being adopted also for cyber security, hence it is important to 
evaluate when and which category of algorithms can achieve adequate results. We 
analyse these techniques for three relevant cyber security problems: intrusion detection, 
malware analysis and spam detection. We initially propose an original taxonomy of 
the most popular categories of ML algorithms and show which of them are currently 
applied to which problem. Then we explore several issues that influence the application 
of ML to cyber security. Our results provide evidence that present machine learning 
techniques are still affected by several shortcomings that reduce their effectiveness 
for cyber security. All approaches are vulnerable to adversarial attacks and require 
continuous re-training and careful parameter tuning that cannot be automatized. 
Moreover, especially when the same classifier is applied to identify different threats, 
the detection performance is unacceptably low; a possible mitigation can be achieved 
by using different ML classifiers for detecting specific threats. Deep learning is still at 
an early stage and no final conclusion can be drawn. Significant improvements may be 
expected, especially considering the recent and promising development of adversarial 
learning. Our takeaway is that machine learning techniques can support the security 
operator activities and automate some tasks, but pros and cons must be known. The 
autonomous capabilities of ML algorithms must not be overestimated, because the 
absence of human supervision can further facilitate skilled attackers to infiltrate, steal 
data, and even sabotage an enterprise. 
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