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Neural Network and 
Blockchain Based Technique 
for Cyber Threat Intelligence 
and Situational Awareness

Abstract: Protecting Critical Infrastructure (CI) against increasing cyber threats has 
become as crucial as it is complicated. To be effective in identifying and defeating cyber 
attacks, cyber analysts require novel distributed detection and reaction methodologies 
based on information security techniques that can automatically analyse incident 
reports and securely share analysis results between Critical Infrastructure stakeholders. 
Our goal is to provide solutions in real-time that could replace human input for cyber 
incident analysis tasks (triage) to classify cyber incident reports, find related reports in 
a fast and scalable way, eliminate irrelevant information, and automate reporting life-
cycle management. Our effective and fast incident management method is based on 
artificial intelligence and can support cyber analysts in establishing cyber situational 
awareness, and allow them to quickly adopt suitable countermeasures in the case 
of an attack. In this paper, we evaluate deep autoencoder neural network supported 
by Blockchain technology as a system for incident classification and management, 
and assess its accuracy and performance. This approach should reduce the number 
of manual operations and save storage space. We used a Blockchain smart contract 
technique to provide an automated trusted system for incident management workflow 
that allows automatic acquisition, classification and enrichment of incident data. We 
demonstrate how the presented techniques can be applied to support incident handling 
tasks performed by security operation centres.
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1. Introduction

Cyber Situational Awareness (SA) [1] is a perception of security and threat situations 
coupled with current and future impact assessment. In recent years, researchers in the 
SA field have created increasingly complex tools across many application domains. 
Speed of events, data overload, and meaning underload [2] make real-time SA of 
cyber operations very difficult to evaluate. Addressing data that is often vague and 
imprecise, we have to rely on imperfect information to detect real attacks and to 
prevent an attack from happening through appropriate risk management. Security 
Operation Centre (SOC) analysts receive a huge amount of daily threat reports. These 
analysts face challenges finding relevant information in large, complex data sets when 
exploring data to discover patterns and insights and following organisation business 
processes, such as proper acquisition, use, archiving and disposal of threat reports. 
For humans to be effective in identifying and defeating cyber attacks, novel tools that 
can fill the gap between cyber data and situation comprehension are highly desired. 
The research presented here is designed to aid in developing a system (see Figure 1) 
that will automatically support a cyber analyst by analysing and classifying incoming 
cyber incidents by searching similar high severity cyber incidents that could affect 
cyber SA, and by life-cycle management of the incident. 

Analysis is triggered by a cyber incident report generated by one of the stakeholders 
in the CI network. The incident analysis can be performed for large amounts of data 
by using a solid knowledge base (KB), and employing one of the available incident 
analysis tools. A deep autoencoder (AE) method can be used to analyse existing KB 
or particular large dataset. The primary purpose of designing a deep autoencoder for 
SA is to increase the speed of sharing highly severe information and to enable fast 
and trustworthy cyber incident classification, without the need for substantial human 
involvement. In our study, we compare existing cyber threat intelligence tools and 
techniques, describe automatic cyber intelligence analysis approach using a deep 
autoencoder neural network, and present evaluation results. We leverage expertise 
collected in available cyber intelligence tools with the power of the neural networks 
approach. 
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FIGURE 1. THE OVERVIEW OF ESTABLISHING THE CYBER SITUATIONAL AWARENESS USING 
NEURAL NETWORKS (AE) AND SMART CONTRACTS FOR INFORMATION CLASSIFICATION AND 
LIFE-CYCLE MANAGEMENT.

The primary contribution of this work is a real-time solution that could replace human 
input for a huge number of cyber incident analysis tasks. Another is a methodology, 
developed to improve information organization and access in cyber security 
information systems based on automatic classification of cyber security documents 
according to their expected threat level. We hypothesise that the application of Smart 
Contracts based on the existing Blockchain technology Ethereum [3] can solve some 
SA problems. The main purpose of designing Smart Contracts for SA is to enable rapid 
and trusted cyber incident classification and management, without the need for a large 
centralised authority. We propose that Smart Contracts based on decentralised assets 
such as Ethereum can reduce effort for incident life-cycle management and manual 
analysis costs. Novel techniques that can automatically make predefined decisions 
obvious by using Smart Contracts can help identify and defeat cyber attacks.

In our context, a Smart Contract basically is a piece of software that fixes and verifies 
negotiated behaviour and cannot be manipulated because it is distributed and executed 
on multiple nodes on a Blockchain. Another value of using Smart Contracts is that 
once deployed, it can function automatically, without the need for human interaction. 
In our proposed threat intelligence analysis system, we describe the incident handling 
procedure and instructions using a Smart Contract programming language (Solidity) 
and upload this Smart Contract to a Blockchain instance (a private Ethereum network). 
The source code of the Smart Contract defines instructions and rules; for our system, 
we created ‘Acquisition’, ‘Use’, ‘Archival’ and ‘Disposal’ Smart Contracts (see Figure 
1). The state of the Smart Contracts is stored on the Blockchain and is transparent and 
accessible to all registered community members. The Smart Contract code is executed 
in parallel by a network of miners under consensus regarding the outcome of the 
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1	 http://caesair.ait.ac.at
2	 https://github.com/certtools/intelmq
3	 https://github.com/MISP/MISP

execution. The execution of the Smart Contract results in an update of the contract’s 
state (BLOCKn+2) on the Blockchain that is synchronised with every participating 
user (CI1-CIn) through standard peer-to-peer mechanisms and a Proof-of-Work-based 
consensus mechanism. An incident report produced by one of the users (security 
expert protecting CIs) goes through the Smart Contracts and is handled automatically, 
according to the programmed instructions.

The management system is aimed at the automatic management of threat reports 
provided by threat analysis tools such as CAESAIR,1 IntelMQ2, or MISP3 and 
should provide effective decision support for a SOC operator. Compared to manual 
classification, automatic classification by threat level can significantly support and 
accelerate reaction time of an SOC analyst. For example, the Collaborative Analysis 
Engine for the Situational Awareness and Incident Response (CAESAIR) tool [4] 
supports various security information correlation techniques and provides customizable 
import capabilities from a multitude of security-relevant sources. These sources 
include a custom repository, open source intelligence (OSINT) feeds and IT-security 
bulletins, as well as a standardised vulnerability library (Common Vulnerabilities and 
Exposures – CVE). CVEs are especially important for Smart Contracts with regard 
to likelihood assessments based on game theory [5] that implements risk scoring [6]. 
Employing CAESAIR with CVE scoring [7] and extending it by automated tagging 
can provide valuable input for information classification and life-cycle management. 
Such a system can be implemented using Smart Contracts created for a particular 
organization. Each institution may have multiple classification profile definitions 
dependent on the network, CI and the role of the cyber analyst.

This paper is structured as follows. Section 2 gives an overview of related work and 
concepts. Section 3 explains the cyber incident classification workflow. The cyber 
incident life cycle issues are covered in Section 4, Section 5 presents the experimental 
setup, applied methods end evaluation and Section 6 concludes the paper.

2. Related work

Threat intelligence in the cyber security (CS) realm is provided by a number of 
cyber incident analysis tools. For example, the CAESAIR tool provides analytical 
support for security experts carrying out cyber incident handling tasks on national 
and international levels, and facilitates the identification of implicit relations between 
available pieces of information. IntelMQ is an open source tool collaboratively 
developed by Austrian CERT and other parties aiming at parsing and correlating 
cyber incidents. MISP, the Malware Information Sharing Platform is another open 
source tool that performs automatic data correlation by finding relationships between 
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attributes and indicators from malware, attack campaigns, or analysis. It incorporates 
an indicator database to store technical and non-technical information about malware 
samples, incidents, attackers and intelligence; and a sharing functionality to facilitate 
data exchange using different models of distribution.

The autoencoder approach is widely used for different analytical tasks. A machine 
learning framework based on recursive autoencoders [8] can be used for sentence-level 
prediction of sentiment label distributions. A very deep autoencoder [9] is employed for 
content-based image retrieval. In our approach, we are using this method for similarity 
searches. The advantage of the autoencoder method is that it learns automatically 
from examples. The autoencoder makes use of neural networks which are already in 
use by latent semantic analysis for text categorization [10] to reduce dimensionality 
and to improve performance. Another application [11] employs an artificial neural 
network to improve text classifier scalability. Classification methods implemented in 
the previously mentioned threat intelligence tools suffer from large vector sizes and 
are less effective as the number of incidents rise. The main drawback of existing text 
classification methods, such as SVM [12], Word Embeddings Neural Networks or the 
Gensim tool is that they require a huge database for training to provide meaningful 
results, but expected SOCs datasets are not large enough for such semantic-based tasks. 
Another common disadvantage of these techniques is the lack of results transparency 
due to employing vectors containing real-valued numbers. These tools provide results, 
but it is difficult to explain how the results were calculated. In particular, the SVM 
approach is limited by the choice of the kernel. Another disadvantage is the inability 
to handle unknown words or words which were not included previously in the training 
vocabulary. Consequently, for the particular use case of threat incident classification 
task for SOCs, we suggest using the autoencoder solution that scales well because of 
the small vector size while maintaining a high level of accuracy.

Multiple researchers are developing an automated technology that will support an 
information classification system. An attempt to classify the relationships between 
documents and concepts [13] employs principles of ontology. To improve information 
organization and access in construction management, a methodology [14] was 
developed based on automatic hierarchical classification of construction project 
documents according to project components. A survey of various cyber attacks and 
their classification [15] attempted to develop an ontology for cyber security incidents. 
They classify by characteristics, and by purpose and motivations. Additionally, cyber 
attacks can be classified based on the severity of involvement, scope, or network 
types with multiple sub classification terms. Contrary to this approach, we classify 
only by threat level that can differ from organisation to organisation. Our goal is to 
focus human expert resources on the most urgent incidents important for a particular 
organisation. An information life-cycle model described in [16] is also applicable to 
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the CS domain. Cyber incident reports are acquired, analysed and become outdated. 
Effective automatic classification, retention and disposal policies can mitigate risks 
to data and make information management more effective. Classification of data 
enables a company or SOC to focus their resources toward the most valuable or urgent 
incidents and to handle less valuable incidents, automatically saving time and other 
costs. 

Because members of a CI network do not necessarily trust each other, do not have a 
central authority and have a need to store and share the life-cycle state of the incident, 
we suggest a Blockchain-based solution for life-cycle management. An overview of 
the Blockchain technology and its potential to facilitate money transactions, Smart 
Contracts design, automated banking ledgers and digital assets is provided in [17]. 
A Blockchain platform comparison [18] discusses five general-use Blockchain 
platforms and looks at how Blockchain technology can be used in applications outside 
of Bitcoin to build custom applications on top of it. This comparison suggests that 
Ethereum is currently the most suitable and well-established platform. Therefore, 
for cyber incident analysis we employ an Ethereum Blockchain (specifically, the 
Pyethereum implementation), which supports a focused Smart Contracts testing 
environment without the need of mining. In the proposed system, we intend to apply 
Smart Contracts for cyber incident classification and life-cycle management, which is 
unique for the given domain.

3. Cyber incident classification 
using autoencoder

For our study, we assume that a cyber expert is responsible for a CI and detects 
suspicious behaviour in the system. The expert needs more information to select the 
correct mitigation strategy. She must collect and analyse all the available information 
related to ongoing and previous attacks for the particular use case, and transform it into 
actionable intelligence. Security information such as incident reports, vulnerability 
alerts, advisories, bulletins etc., usually come in the form of semi-structured text 
documents. Acquiring cyber threat intelligence from such documents requires 
manually reviewing and discerning what significant information they can find, and 
identifying implicit correlations among them in order to estimate their impact and 
outline possible mitigation strategies. To avoid this manual effort, the CIs expert can 
provide an incident report as an input to a deep autoencoder and receive a threat 
report back if it has sufficient severity. An automatic approach delivers a significant 
improvement in terms of personnel costs when compared to manual cyber incident 
handling. As a result, an analyst has the up-to-date SA status and we ensure fast and 
scalable information exchange and enrichment.
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The idea behind applying the autoencoder approach is that we can map N-dimensional 
data onto the M orthogonal directions in which the data have the most variance and 
form a lower dimensional subspace. The acceptable drawback of this conversion is 
that in the remaining orthogonal directions we lose information about the original data 
point location.
 
FIGURE 2. THE WORKFLOW FOR CLASSIFICATION AND LIFE-CYCLE MANAGEMENT OF CYBER 
INCIDENT USING AUTOENCODER AND SMART CONTRACTS.

We employ a deep autoencoder that was trained as described in the workflow shown 
in Figure 2. The workflow execution starts with reading the incident report (1) and 
parsing the report content. Input data along with the expert profile settings, which 
are specific to the organisation, are converted to a binary vector using the ‘bag of 
words’ technique (2) and after the normalization step (3) passed to the autoencoder 
in encoded form (4). In this step, we compile the words most used in documents. The 
remaining vector is comprised of word counts irrespective of order. For simplicity, 
we use a binary count where we mark 1 if a word count is bigger than 0, and 0 if the 
given word is not present in an original document. Additionally, we ignore stop words 
(words with no discriminatory power, such as common articles and prepositions, that 
we do not need in analysis). To achieve reasonable performance and scalability, we 
reduce each vector to a much smaller vector that still comprises enough information 
about the content of the document. In the next step, we train the neural network to 
reproduce its input vector as its output. This forces it to compress as much information 
as possible into the 10 numbers in the central bottleneck. These 10 numbers are then a 
result of deep autoencoder training and a good way to compare documents (5) in a fast 
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and scalable way using the cosine similarity method. In the next step, we merge the 
detected related incidents with institutional settings and decide which priority level 
(see Equation 1) should be applied to the given incident. The compressed vectors are 
stored on the hidden level of neural network (see Table 1).

𝑃 = 𝑓(𝐼𝑟, 𝑊𝑟, 𝑊𝑜, 𝑇𝑠, 𝑊𝑠)            (1)

Equation 1 shows the incident priority level P that returns the value – either 0 
that corresponds to ‘Low’ or 1 representing ‘High’. Priority level is a function of 
aggregated incident evaluation metrics, which depend on basis indicators, such as 
‘number of related incidents’ 𝐼𝑟, ‘number of related words’ 𝑊𝑟, ‘number of original 
words’ 𝑊𝑜, ‘detected significant terms’ 𝑇𝑠 and ‘vulnerability score’ 𝑉𝑠.

4. Cyber incident management 
using smart contracts

We evaluate the application of Smart Contracts to classify and manage incident 
reports labelled by the autoencoder as a high priority threat. Smart Contracts can be 
used to estimate that the reported cyber incident is of high relevance, to remove it 
after some predefined time, to tag it by acquisition, to search by tag, to assign access 
rights (confidential, private, sensitive, public), to periodically check data integrity 
(preventing manual or hardware corruption), or to determine data provenance. Our goal 
is to save storage space, improve performance and to keep information up-to-date in a 
trustworthy way by leveraging the distributed nature of Blockchain technology. Once 
a Smart Contract is triggered, the analysis result is automatically propagated among 
all participants through inherent Blockchain mechanisms. One of the advantages of 
this approach is that Smart Contracts cannot be changed or compromised without 
being detected (through hashed transactions) and that the messages can be verified 
to originate from a trusted source (through public key encryption). After incident 
acquisition, a Smart Contract performs the classification of a report by threat level, 
stores the obtained threat level on a Blockchain and initiates the life-cycle management 
process for the given incident. In the next step, this report will be used, archived and 
disposed. 

We employ four Smart Contracts for cyber incident processing, as depicted in Figure 
2. The workflow execution after the classification steps performed by the autoencoder 
proceeds with the analysis of an incident report by reading and parsing the report 
content enriched with the classification results (6). Input data, along with organization-
specific expert profile settings, are passed to the first Smart Contract ‘acquisition’ (7), 
which employs one of the threat intelligence tools. Classification occurs by employing 
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incident text, split by words or phrases, specific terms separated by low, middle and 
high threat relevance. We compute risk points, counting how many of terms are 
included in the incident report for each threat level. For threat level calculation, we 
either estimate threat level by applying thresholds for each level or we employ the 
weighted method from Formula 2, where we additionally multiply the calculated 
points on each threat level with a constant which represents the weight of the related 
threat level. The threat level scale ranges from 1 to 3, where 1 is ‘low threat’ and 3 is 
‘high threat’. Risk points RP is a sum of high risk points 𝐻𝑟𝑝 multiplied by high threat 
weight 𝐻𝑇𝑤, middle risk points 𝑀𝑟𝑝 multiplied by middle threat weight 𝑀𝑇𝑤 and low 
risk points 𝐿𝑟𝑝 multiplied by low threat weight 𝐿𝑇𝑤.

Where 𝐻𝑇𝑤 =3, 𝑀𝑇𝑤 =2, 𝐿𝑇𝑤=1 and 𝐻𝑇𝑡=10, 𝑀𝑇𝑡=3. Threat level 𝑇1 can be inferred 
using high threat 𝐻𝑇𝑡 and middle threat 𝑀𝑇𝑡 thresholds and weighted risk points 𝑅𝑃 
from Formulas 2 and 3. The acquisition step (7) is split into different tasks. Automatic 
classification by threat level defines one of three threat levels: ‘high’ level requires 
fast reaction and mediation steps, triage process; ‘medium’ level assumes detection 
of ‘Indicator of Corruption’ (IoC) or metrics that indicate possible vulnerabilities, 
and requires SW update; and ‘low’ level addresses regular cyber security information 
and logs, and requires attention but should not necessary be a threat. Tagging means 
that specific tags can be assigned to a report to make it easier to find, shift or remove 
later. Removing personal information from the incident report to protect personal data 
may be required (by the European GDPR) before storing a normalised version of the 
incident. In the ‘using’ step (8), the workflow supports an automated similarity search, 
status and provenance retrieval, and enrichment with data and metadata periodic 
check for data integrity (using the hash of the incident report). Finally, depending 
on the threat level after some period of time, the incident can be archived (step 9) or 
removed e.g. by date or by tag (step 10).

We believe that this automatic smart-contracts-based approach would substantially 
support incident classification and management and could be used by analysts for the 
defence of CI. The suggested method would make SA analysis less cost-intensive and 
would perform with higher throughput. However, as is typical in this area, a human-
based approach performs with higher accuracy. 
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5. Experimental Evaluation

In the evaluation section, we measure how accurate our automated computations are 
and how long it takes for the deep autoencoder to make its calculations. Additionally, 
we report on measurements of the automated cyber incident classification and 
how long it takes for Smart Contracts to be executed and validated. We carried out 
measurements for several incident reports. The goal of this evaluation was to leverage 
the domain expert knowledge base for cyber incident classification and management 
as described in the workflow (see Figure 2), pointing out threat level relevant for SA.

A. Evaluation Data Set
The cyber analyst’s goal is to prioritise a detected cyber incident, either to mitigate it 
or to perform some other cyber incident response. For this test, we assumed that our 
CI is a financial organisation that employs MS Office products on Windows OS and 
using software products such as Internet Explorer, Firefox, Adobe, etc. The dataset 
used was aggregated from OSINT sources on the Internet. The dataset contained 
5,850 training documents and 584 test documents. We evaluated cyber incident reports 
from the ‘seclists’ feed4 from the last three years addressing four report categories. 
The ‘fulldisclosure’ category contained messages from the public, a vendor-neutral 
forum for detailed discussion of vulnerabilities and exploitation techniques, as well as 
tools, papers, news, and events of interest to the community. The ‘bugtraq’ category 
is a general security mailing list. The ‘pen-test’ category discloses techniques and 
strategies that would be useful to anyone with a practical interest in security and 
network auditing. The ‘nmap-dev’ category comprises an unmoderated technical 
development forum for debating ideas, patches, and suggestions regarding proposed 
changes to Nmap5 and related projects. The specific cyber security terms were obtained 
from the CS glossary.6 We anticipated that employing the described autoencoder and 
Smart Contracts approach should classify cyber incidents among a very large number 
of incident reports facilitating further cyber analysis and incident management. 

B. Experimental Results and Interpretation
This evaluation took place on an Intel Core i7-3520M 2.66GHz computer using 
Python on Ubuntu OS. We performed a total of 10 training iterations (epochs) for the 
autoencoder. The autoencoder training and accuracy calculation process took about 
262 seconds (see Figure 3). This figure shows that loss and validation loss decreased 
and accuracy and validation accuracy increased with each epoch. A final accuracy of 
0.942 was achieved; this demonstrates how well input is reconstructed compared to 
the output.
 

4	 http://seclists.org/
5	 https://nmap.org/
6	 https://scottschober.com/glossary-of-cybersecurity-terms/
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FIGURE 3. ACCURACY AND LOSS CHARACTERISTICS BY AUTOENCODER TRAINING.

The neural network used a total of 502,000 parameters during the autoencoder training. 
The summary of the neural network training is presented in the Table 1. The neural 
network is composed of 1 input layer and 5 hidden layers. The number of neurons in 
these layers range from 10 to 2,000. Most layers use a rectified linear unit (ReLU) as 
an activation function. The last decoding layer employs a sigmoid activation function.

TABLE 1. SUMMARY OF THE DEEP AUTOENCODER TRAINING PROCESS.

The autoencoder model simply maps an input to its reconstruction. To achieve this, 
we first train an autoencoder until it reaches the stable train/validation loss value. The 
deep autoencoder system starts the SA analysis with incident content retrieval, which 
is converted to an input vector by using word counts. This input vector then goes 
through encoding in multiple hidden layers and is reconstructed to an output layer 
after decoding in the final layers. Having trained the model, we were able to retrieve 

Layer

Input layer

Hidden layer 1

Hidden layer 2

Hidden layer 3

Hidden layer 4

Hidden layer 5

Type

InputLayer

Dense

Dense

Dense

Dense

Dense

Activation Function

ReLU

ReLU

ReLU

ReLU

ReLU

Sigmoid

Neurons #

2,000

2,000

250

10

250

2,000

Parameters #

0

4,002,000

500,250

2,510

2,750

502,000
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the middle layer of the autoencoder model with the smallest number of neurons (10). 
Therefore, we retrieved trained 10-number-long IDs for each of the 584 test vectors 
and iterated this over all of the document vectors (10-numbers-long each) calculating a 
cosine similarity value for each document. For instance, the trained vector of the query 
incident report ‘bugtraq-2017-Aug-1.txt’ containing 10 numbers is [-8.73114914e-
10, 1.01575899e+01, 2.12457962e-09, 1.29858088e+00, 2.67755240e-09, 
9.32977295e+00, 4.54857439e-01, -5.82076609e-11, 8.55403137e+00, 5.52972779e-
09]. This vector can be used for fast and scalable similarity search. Computation 
demonstrated that, for the given incident report, the first three most similar documents 
are: ‘nmap-dev-2017-q2-8.txt, fulldisclosure-2017-Jan-68.txt, fulldisclosure-2015-
Oct-71.txt’. During the correlation calculation using the deep autoencoder, there was a 
minor fluctuation of accuracy value in the last epochs (between 0.942 and 0.943). This 
is because the autoencoder employs a restricted Boltzmann machine (RBM), which 
treats the word counts as probabilities and makes use of random values in calculations. 
Therefore, it is possible that the highest level of accuracy can be achieved before all of 
the epochs are calculated (epoch 4 in our case).
 
TABLE 2. EXCERPT OF CLASSIFICATION RESULTS FOR CYBER INCIDENT REPORTS BY THEIR 
ACQUISITION USING SMART CONTRACTS.

In the test scenario, we investigated incident reports from ‘seclists’ CS feed to 
classify those by threat level and to automatically manage them from acquisition 
to disposal without involvement of human analyst (see Table II). Due to the large 
number of results in this table, we describe only selected classification results, which 

Fulldisclosure-2017-Jan-q1-75

Fulldisclosure-2015-Feb-q1-53

Fulldisclosure-2015-Feb-q1-90

Bugtraq-2017-Jan-q1-18
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demonstrate typical cases. Query incident ID in ‘seclists’ terms is presented in the 
first column. The second column shows the first of the detected related incident IDs. 
The similarity score for found related incidents for selected examples is nearly 1.0. 
In the third column, we show a number of detected common words between query 
and found incidents. Column ‘Source’ depicts an incident source that can be a person 
or an organisation. The next four columns are related to Smart Contracts and show 
assigned Blockchain ID, consumed time, number of significant terms and threat level. 
The experimental results are represented in Figure 4 and show the distribution of 
threat incident reports over the last three years, respective of high, middle, and low 
threat levels. Each incident category is flagged by an assigned colour. The Y axis is 
a range of the number of incidents and the X axis is a time scale split into quarters. 
The figure shows that the most productive category for high (up to 325) and low (up 
to 215) threats is a ‘bugtraq’ category, whereas ‘nmap-dev’ (93) and ‘fulldisclosure’ 
(97) are dominating middle threat reports. For a given period of time, most active 
phase for all levels is from ‘Q4-2015’ to ‘Q3-2016’. Visualization of incident reports 
provides an analyst with a quick and descriptive SA picture. To focus on a particular 
area, the analyst can perform fine tuning, adjust the time scale or select a particular 
category or source.

FIGURE 4. PLOT FOR DISTRIBUTION OF THREAT INCIDENT REPORTS OVER LAST THREE YEARS 
FOR DIFFERENT THREAT LEVELS SHARED QUARTERLY.

As a use case scenario, assume that SOC has received an incident report from 
Vulnerability Lab in January 2017. On receiving this report, our Smart Contract 
triggers automatic analysis and classification of this incident report. According to 
Table 2, we see that this incident is assigned a Smart Contract identifier 3419 and the 
contract identifies 13 significant terms. Going through the contract logic we estimate 
both the regular and the weighted threat level as a ‘high threat’ (3). That means it 
should be handled soonest and with highest priority. The incident is automatically 
tagged and enriched with additional data from CS feeds and tools. Links to similar 
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incidents are established. All this facilitates the triage process for a cyber analyst and 
performs analysis steps that are usually done manually. According to the evaluated 
classification level, Smart Contract defines timestamps for automated archival and 
disposal of incident data. Therefore, a cyber analyst does not need to worry about the 
incident life-cycle and can focus their resources on triage for urgent cases.

The smallest duration for one Smart Contract operation was 0.252 seconds from 
Blockchain ID 7994 report and the longest operation time 0.677 report with ID 3419. 
This difference can be explained by the different report sizes (we calculate hash for 
report content) and different risk points numbers (3 for ID 7994 vs. 13 for ID 3419). 
This evaluation also gives a simple overview of detected significant terms, such as 
‘attack’, ‘hack’, ‘phishing’ for high threat incidents, ‘access’, ‘authentication’, and 
‘encode’ for middle threat incidents and ‘key’, ‘capability’, and ‘investigation’ for low 
level threats. Having a Smart Contract ID, the analyst is able to retrieve status data 
of a particular incident report from Blockchain using Smart Contract (e.g. by hash, 
provenance, time, tags, owner).

TABLE 3. OVERVIEW ABOUT AGGREGATED THREAT 
REPORTS FOR DIFFERENT THREAT CATEGORIES.

The category overview experimental results are presented in Table 3 which shows 
the distribution of high, middle and low threat level incidents for different incident 
categories. This table demonstrates that most incident reports (2,429) come from 
the ‘nmap-dev’ category, followed by ‘fulldisclosure’ (1,872) and ‘bugtraq’ (1,447). 
Most of incident reports belong to the low threat level (2,461) but the report number 
classified as high threat is also high (1,967). Most high threat level reports come 
from the ‘fulldisclosure’ (724) and ‘bugtraq’ (758) categories. That means that these 
categories should be addressed first by incident management.

C. Evaluation Effectiveness
We can see that, in general, the autoencoder training accuracy improves with every 
iteration (epoch) from 0.674 at the beginning to 0.942 at the end, which is sufficiently 
good; whereas training loss (error) of original information decreases from 0.691 to 
0.152. This means that the decompressed outputs will be degraded compared to the 

Threat Category

Fulldisclosure

Bugtraq

Pen-test

Nmap-dev

Sum

High Threat

724

758

55

430

1,967

Middle Threat

558

147

43

674

1,422

Low Threat

590

542

4

1,325

2,461

Total

1,872

1,447

102

2,429

5,850
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original inputs, but it is an acceptable rate. Similarly, validation accuracy is in the 
range between 0.616 and 0.915. Validation loss decreases from 0.684 to 0.220.

FIGURE 5. ROC SPACE PLOT.

The classification effectiveness for high priority incidents can be determined in terms 
of a Relative Operating Characteristic (ROC) using the labelled ground truth query 
dataset. SA analysis divided the provided incident reports into two groups: ‘high’ and 
‘low priority’ by associated expert parameters and thresholds for each category; e.g. 
for the ‘fulldisclosure’ category the provided algorithm detected 229 true positive 
incidents, 14 true negative reports, one false positive incident and two false negative 
documents. The primary statistical performance metrics for ROC evaluation are 
sensitivity (0.991) or true positive rate and false positive rate (0.059). The associated 
ROC value is represented by the point (0.059, 0.991). The ROC space (see Figure 5) 
demonstrates that the calculated FPR and TPR values for the evaluated categories are 
located very close to the so called perfect classification point (0, 1). The calculation 
results demonstrate that the calculated similarity score values for the query documents 
are located very close to the labelled classification. These results demonstrate that an 
automatic approach for cyber incident classification of the method described is very 
effective and is a significant improvement on manual analysis. Therefore, an analysis 
method based on deep autoencoder techniques can be suggested as an effective method 
for incident classification, and as a supporting method to establish cyber SA. The 
results of the analysis confirm our hypothesis that an automated approach is able to 
reliably classify incidents, thus making analysis of a large number of cyber incidents 
a feasible and affordable process. However, further research is required to improve the 
decision and accuracy metrics of this method. 
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6. Conclusions

In this work, we have presented an automated approach to classify and manage 
incident reports for establishing cyber situational awareness using a deep autoencoder 
neural network for classification and a Smart Contracts technique provided by 
Blockchain technology for incident management. The developed system should 
assist cyber analysts by protecting Critical Infrastructures against increasing cyber 
threats. The main contribution of this work is a real-time solution that could replace 
human input for a large number of cyber incident analysis tasks in order to facilitate 
cyber incident classification, eliminate irrelevant information and focus on important 
information to promptly perform mitigation steps. Another contribution is the use 
of the Smart Contract techniques to provide an automated trusted system for an 
incident management life-cycle that allows automatic acquisition, classification, use, 
archiving, and disposal. An additional advantage of this approach is a reduction of 
human analysis costs. Ultimately, our research will lead to the creation of automated 
security assessment tools with more effective handling of cyber incidents.
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