
427

Mission-Focused Cyber
Situational Understanding
via Graph Analytics

Abstract: This paper describes CyGraph, a prototype tool for improving network
security posture, maintaining situational understanding in the face of cyberattacks,
and focusing on protection of mission-critical assets. CyGraph captures complex
relationships among entities in the cyber security domain, along with how mission
elements depend on cyberspace assets. Pattern-matching queries traverse the graph
of interrelations according to user-specified constraints, yielding focused clusters of
high-risk activity from the swarm of complex interrelationships. Analytic queries
are expressed in CyGraph Query Language (CyQL), a domain-specific language
for expressing graph patterns of interest, which CyGraph translates to the backend
native query language. CyGraph automatically infers the structure of its underlying
graph model through analysis of the ingested data, which it presents to the user for
generating queries in an intuitive way. CyGraph has been experimentally validated in
both enterprise and tactical military environments.

Keywords: common operating picture, situational understanding, mission assurance,
graph analytics

Steven Noel
Cyber Solutions Technical Center
The MITRE Corporation
McLean, Virginia, United States

Stephen Purdy
Software Engineering Technical Center
The MITRE Corporation
McLean, Virginia, United States

Travis Lu
Software Engineering Technical Center
The MITRE Corporation
McLean, Virginia, United States

Paul D. Rowe
Cyber Solutions Technical Center
The MITRE Corporation
McLean, Virginia, United States

Michael Limiero
Cyber Solutions Technical Center
The MITRE Corporation
McLean, Virginia, United States

Will Mathews
Cyber Solutions Technical Center
The MITRE Corporation
McLean, Virginia, United States

2018 10th International Conference on Cyber Conflict
CyCon X: Maximising Effects
T. Minárik, R. Jakschis, L. Lindström (Eds.)
2018 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal
use within NATO and for personal or educational use when for non-profit or
non-commercial purposes is granted providing that copies bear this notice
and a full citation on the first page. Any other reproduction or transmission
requires prior written permission by NATO CCD COE.

428

1. INTRODUCTION

Through centuries of experience and modern advances in technology, military
commanders can rely on a fairly sophisticated common operating picture (COP) of
the kinetic battlespace. However, significant challenges remain for extending the
COP to include cyberspace as an operational domain [1]. Such an extended COP is
needed for achieving appropriate levels of resilience to attack, maintaining situational
awareness and understanding, and providing command and control of cyber (and joint
cyber/kinetic) operations [2]. A cyber-extended COP needs to support the analysis of
complex interactions among disparate data for decision making.

This paper describes CyGraph, a prototype tool for improving cyber resilience,
maintaining situational awareness in the face of cyberattacks, and focusing on
protection of mission-critical assets. CyGraph builds rich graph models from various
network and host data sources, fusing isolated data and events into a unified model.
From this, cyber operators can apply powerful graph queries that uncover multi-
step graph reachability from threats to key cyber assets, as well as other patterns
of cyber risk. In this way, the tool correlates and prioritizes alerts in the context of
vulnerabilities and key assets. CyGraph analytics extract ‘needle in haystack’ patterns
of cyber risk focused on mission assets, with interactive visualization of query results,
giving a common operating picture of cyberspace.

Traditional graph formulations with entities (vertices) and relationships (edges) of a
single homogeneous type lack the expressiveness required for representing the rich
structures involved in analyzing cyber risk. CyGraph employs property graphs, i.e.,
attributed, multi-relational graphs with vertices and edges having arbitrary properties
[3]. Property graphs have the power needed for expressing a range of heterogeneous
vertex and edge types, which arise from combining data from a variety of sources into
a coherent unified cyber security graph model.

Unlike previous graph-based tools that focus on specific analytic use cases against
fixed data models, CyGraph employs a schema-free design with a property-graph data
model. The specific security data model is defined implicitly, according to how source
data are transformed to a property graph. To help analysts more easily work with
such complex models, CyGraph automatically infers the underlying data model for
a populated graph. It’s domain-specific query language provides a simplifying layer
of abstraction from the native query language of the graph database implementation.

CyGraph has been tested in military environments, including at the enterprise
backbone and tactical command levels. In this paper, for sensitivity reasons, we

429

describe CyGraph analytics through simulated data; these datasets mimic patterns
that we have observed in real data.

2. PREVIOUS WORK

There has been considerable previous work in graph-based approaches to cyber
security. For example, a review in 2013 [4] describes hundreds of papers that employ
various kinds of graph representations for security, with over 30 categories just for
the specific case of modelling network attacks and defenses with acyclic graphs. A
more recent study [5] examines over 50 proposed graph-based security models, each
having key differences in representation. The state of practice has reached a level of
maturity such that various off-the-shelf tools (both commercial and governmental)
have emerged for graph analytics in operational environments [6] [7] [8] [9] [10] [11]
[12] [13].

The wide range of proposed graph representations address the fundamental issue
that classical graph algorithms alone are insufficient for solving analytic problems
in cyberspace. Instead, specific data models are needed that capture the structure and
semantics of the various kinds of entities and their relationships. But a significant
limitation of the current generation of tools is that they have fixed data models, which
limits their scope and ability to adapt to changes in operational environments and
analytic requirements.

The idea of leveraging graph database technology for cyber security analysis is
first explored in 2015 [14]. A proof-of-concept version of the CyGraph tool, which
is implemented as a Java-based application running on a single host, is described
[15] [16]. The proof-of-concept tool was applied for some security use cases, using
simulated data or isolated examples of real operational data [17] [18]. A particular
limitation of these preliminary examples is that mission functional dependency
relationships are analyzed separately from cyberspace relationships.

Based on our initial success in proving the CyGraph concept, we have developed
a more mature and capable CyGraph tool. This advanced prototype is a web-based
(JavaScript) client-server application, distributed across three machines (user web
browser as GUI, middle-tier intermediary service, and back-end database service).
Leveraging this architecture, we have implemented multiple technologies for the
CyGraph back-end graph database, including support for Apache Rya [19] within the
Big Data Platform (BDP) [20] developed by the US Defense Information Systems
Agency (DISA). The advanced CyGraph prototype also integrates with the Elastic
Stack [21] (for Neo4j) or Accumulo [22](for DISA BDP) for scalable data ingest and

430

intermediate storage. A high-level overview of this tool architecture is described in
[2], although no specific analytic results are given there.

The new web-based CyGraph tool has been validated using real data in operational
network environments, at enterprise-level scale. The analytic examples that we
describe in this paper are abstracted versions of the kinds of results we obtained
for real data (abstracted here to protect the sensitive real data). This includes the
development and validation of joint models for cyberspace and mission functions,
e.g., for showing mission risk and/or impact as we describe. The present work also
experimentally validates that CyGraph’s loosely-coupled client-server architecture
can support multiple back-end graph persistence technologies, while insulating the
front-end functionality from the choice of back-end implementation. This in turn
provides flexibility in matching the analytic architecture to the performance and
scaling requirements for a given organization.

3. CYGRAPH MODEL

We begin by defining the formal structures that form the basis of an instance of a
CyGraph model. A graph G = (N, E) is a pair of sets of nodes and edges. The edges
are, themselves, ordered pairs of nodes (n1, n2) from N. A property graph is a graph in
which the nodes and edges come equipped with attributes, that is, arbitrary key/value
pairs describing properties of the elements. We generally assume that nodes and edges
have some minimal structure. Namely, nodes have attributes for a unique identifier
and a type. Edges also have an attribute describing their type. They additionally have
attributes identifying their source and destination nodes. Additional attributes may
include such things as location information, mission criticality, or traffic packet counts.

A CyGraph model instance is defined by the properties attributed to the nodes and
edges, as well as any constraints that may be in effect. Typically, particular property
graphs conforming to a CyGraph model instance are progressively built from
heterogeneous data sources with records containing information about the nodes and
edges. Rather than requiring a fixed schema for the data sources, CyGraph applies
data transformations that map elements of the source data to nodes, edges, and their
properties. Thus, these data transformations implicitly define an instantiated CyGraph
model.

To better understand how a property graph is built, consider the process of reading
in a record r from a data source. Assume the graph built so far is G = (N, E), and the
transform T extracts information about two nodes, n1 and n2, and an edge e between
them. The new graph is G’ = (N ∪ {n1, n2}, E ∪ {e}), where the properties of n1, n2,

431

and e are defined by the transform T. If n1 or n2 was already in N then we simply
update their properties according to any extra information contained in record r.

In general, any property (of nodes or edges) that has potential analytic value (in the
sense of constraining graph queries) can be included as a node or edge property. The
type for a node or edge can then be defined as an arbitrary function of its properties.
Thus, the node and edge types depend on the source data, via the transformation to a
CyGraph property graph.

For example, alerts from Host Based Security System (HBSS) [23] yield node types
describing the category of the alert for the destination node, e.g., whether they are
reconnaissance events (such as port scans) or represent actual host compromise.
Network flow records yield the region in which the node is located (US, non-US,
country of concern) or indicate that the node is key terrain (based on knowledge
of services hosted there and mission dependencies). This transform prioritizes type
information from HBSS alerts over the other two, so that if a host is in the US and
is compromised, it is simply identified as compromised. One could easily define a
different transform that extracts a type in the Cartesian product of the types defined by
each data source. The choice of transform depends on the sort of questions one wants
answered regarding the graph (i.e., the analytic queries).

Once CyGraph has constructed the property graph from its data sources, an analyst
can explore the graph with queries expressed in CyGraph Query Language (CyQL),
a domain-specific query language. An important aspect of graph structure pertains to
reachability. CyQL allows for the specification of structural features of trajectories
through a graph. When a query Q is applied to a graph G it results in a (possibly empty)
subgraph G’ ⊆ G. This matching subgraph is then displayed in the user interface.

A directed trajectory is an alternating sequence of nodes and edges (n0, e1, n1,…, ek,
nk) in which, for every 0 < i ≤ k, the source of ei is ni-1 and the destination is ni. An
undirected trajectory is similar, except for any edge ei, its source and destination may
be ni and ni-1 respectively. The length of a trajectory is the number of edges. The graph
of a trajectory is ({n0,…,nk}, {e1,…,ek}) in which the sequence information has been
forgotten. A trajectory t is a trajectory of graph G = (N, E), if the trajectory’s graph (N’,
E’) is a subgraph of G (i.e. N’ ⊆ N and E’ ⊆ E).

CyQL specifies trajectories by constraining the number of hops, and the types of the
initial node, the end node, and the edges. Queries are built from the following clauses
with their associated semantics:

432

•	 hops($numHops): A trajectory satisfies this clause if its length is
$numHops.

•	 hops($minHops,$maxHops): A trajectory satisfies this clause if its
length is between $minHops and $maxHops (inclusive).

•	 startType($type): Trajectory (n0, e1,…,nk) satisfies this clause if n0 is
of type $type.

•	 endType($type): Trajectory (n0, e1,…,nk) satisfies this clause if nk is of
type $type.

•	 startId($id): Trajectory (n0, e1,…,nk) satisfies this clause if the unique
node identifier u(n0) of node n0 is equivalent to $id.

•	 endId($id): Trajectory (n0, e1,…,nk) satisfies this clause if the unique
node identifier u(nk) of node nk is equivalent to $id.

•	 edgeTypes($types): A trajectory satisfies this clause if each edge is of
one of the types in the comma separated list $types.

•	 undirected(): By default, satisfying trajectories must be directed.
When this clause is used, undirected trajectories also satisfy the query.

A CyQL clause is a concatenated sequence of such clauses. A trajectory t satisfies a
CyQL query Q (written t | = Q) if it satisfies all of the clauses. The result of applying
Q to graph G is simply the union of all trajectories of G that satisfy Q. That is:

Q(G) = {t ∈ trajectories of G: t | = Q}.

CyQL provides a key aspect of risk analysis in CyGraph. In terms of the semantics
of attack paths, query trajectory through the property graph corresponds to multi-step
attack (or attack reachability) through the network. Conceptually, the aspects of CyQL
can be organized as shown in Figure 1.

FIGURE 1. GRAPH TRAJECTORY PATH CONSTRAINTS IN CYGRAPH QUERY LANGUAGE (CYQL)

The left side of Figure 1 represents elements of risk within a network; i.e., things
that we are protecting against. By specifying such risk elements as constraints on the
starting points of a query traversal, trajectories represent ‘downstream’ relationships

433

emanating from risk points. Conversely, the right side represents high-valued assets
within the environment; i.e., things that we are trying to protect. Defining those
things as constraints on the traversal ending points cause paths to be focused on
those assets as reachable from the risky elements. CyQL clauses that occur between
these starting and ending extremes generally serve to constrain path trajectories in
particular ways that help tune analytic focus; e.g., for managing the trade-off between
comprehensiveness of query results and cognitive overload.

CyQL queries involve identifying trajectories that start from nodes representing risk
elements, and end in nodes representing priorities for protection. The set of trajectories
can be further refined by specifying additional traversal constraints regarding the edge
types or total path length. This serves to focus an analyst’s attention on the relationships
that matter the most. By visualizing the results of CyQL queries, CyGraph allows
users to quickly identify known risky patterns or anomalous structures that warrant
further investigation.

For example, given the appropriate data sources, CyQL makes it straightforward to
identify the set of hosts with vulnerabilities that reside within the same connected
component as a key cyber asset. By limiting the query to vulnerable hosts within two
hops of key cyber assets, one can more easily identify the vulnerable hosts that pose
the greatest risks. Queries may also help to identify clusters within the graph that have
interesting properties. A highly connected cluster of hosts with host-based alerts may
be an indication of vigorous adversarial exploration and exploitation.

4. CYGRAPH ARCHITECTURE

CyGraph ingests data from various sources and normalizes it. It then transforms the
elements of the normalized model into a graph model specific to the cyber security
domain. Graph queries are issued from the client front end (translated from CyQL
to native query language in a middle-tier service) and then executed on the backend
database. The resulting query matches are then visualized in the web client (browser).

In this agile architecture, the graph model is defined by how the data sources are
transformed into a property graph, rather than conforming to a predetermined schema.
Model extensions are simply the creation of additional of nodes, relationships, and
properties in the property graph model, and require no schema changes or other
database renormalizing. CyGraph supports two options for backend data storage and
query processing:

•	 Neo4j graph database [24] with normalized data in Elasticsearch [21].
•	 Apache Rya [19] RDF store with normalized data in Apache Accumulo [22].

434

Each of these options is available as open-source software, and (with the exception
of Rya) have commercial support available. The second option (Rya+Accumulo) is
available as part of DISA’s Big Data Platform (BDP) [20].

In the CyGraph front-end analyst dashboard, graph pattern-matching queries are
expressed in CyQL, which CyGraph compiles to Cypher [25] (for Neo4j) or SPARQL
[26] (for Rya). This presents a simplifying layer of abstraction, designed specifically
for the desired risk analysis, freeing the analyst from learning a complex general-
purpose query language.

Typical inputs to CyGraph fall under four categories:
1.	 Network Infrastructure. This captures the configuration and policy aspects

of the network environment.
2.	 Security Posture. Specification of network infrastructure is combined with

vulnerability data to map potential attack paths through the network.
3.	 Cyber Threats. This captures events and indicators of actual cyberattacks,

which are correlated with security posture to provide context for risk analysis
and attack response.

4.	 Mission Dependencies. This captures how elements of enterprise missions
depend on cyber assets.

CyGraph relies on other tools and data sources to build its cyber security graphs. For
example, the TVA/Cauldron tool [6] [7] [8] [9] can build network attack graphs from
host vulnerabilities, firewall rules and network topology. CyGraph can ingest data for
both potential and actual threats, including Splunk [27], Wireshark [28], the National
Vulnerability Database (NVD) [29], and Common Attack Pattern Enumeration and
Classification (CAPEC) [30]. For capturing mission dependencies on cyber assets
[17] [18], CyGraph ingests models developed through other tools [16], including
Crown Jewels Analysis (CJA) [31] and Cyber Command System (CyCS) [32].

The CyGraph implementation is schema-free, so the model is decoupled from the
storage implementation. The particular way in which the data is transformed to a
property graph determines an instantiated CyGraph model. So, for example, not all of
the data sources in the four categories listed above are necessarily needed for useful
analysis – often only a single data source is ingested.

Data is continually streaming in that must be analysed for cyber risk correlation
and prioritization by CyGraph. Leveraging the open source Elastic Stack, the Beats
platform provides agents for gathering data, with Logstash for transformation and
ingest into Elasticsearch. A CyGraph web service then creates a property graph model
and imports it into the CyGraph graph data base (Neo4j).

435

There is a similar analytic flow for CyGraph deployment on BDP, in which data
streams are processed by Apache Storm [33], stored in Accumulo [22] and queried in
Rya [19]. In this analytic flow, the CyGraph data model is mapped to RDF. The result
of a query is a combination of alerts, network flows and vulnerabilities represented
as graph nodes and edges. The matching subgraphs for queries are typically orders of
magnitude smaller than the full graph stored in Neo4j or Rya.

5. CYGRAPH OPERATION

After ingesting data from various sources, CyGraph maps the data to a property graph
stored in a graph database. It automatically infers the underlying graph model through
inspection of the graph database. It then presents the model to the user in the browser
user interface as an interactive graph visualization.

The analyst can interact with this graph model to generate queries in the domain-
specific CyQL query language. In particular, user-selected combinations of edge types
(diamonds) populate the CyQL edgeTypes($types) clause, which specifies edge
types to be matched in a query. For example, edges of type IN define relationships
between Machine nodes and Domain nodes, i.e., network machine membership in
protection domains (e.g., subnets) [14].

Core clauses in CyQL define patterns of reachability through a graph, i.e.,
hops($numHops), hops($minHops,$maxHops), startType($type),
endType($type), startId($id), endId($id), edgeTypes($type),
and undirected(). CyQL includes other features for matching patterns in the
cyber security domain [15], including keywords for host names, IP addresses, subnet
address ranges, arbitrary Boolean combinations of clauses and wildcards in parameter
values. CyGraph queries are stored for sharing and reuse.

Once a query is executed, CyGraph displays the query results, as shown in Figure
2. Each query submission creates a new query pane, with tabs for selecting panes.
The query results (matched subgraph) are visualized in a main panel. Optionally, the
properties for selected nodes or edges are displayed below the graph visualization.

436

FIGURE 2. CYGRAPH WEB USER INTERFACE (QUERY RESULTS)

One of the user-interface options is to cluster elements of the visualized graph in
particular ways, i.e., by user-selected nodes, incoming or outgoing edges for a node,
or by node type. This is illustrated in Figure 3.

437

FIGURE 3. CLUSTERING NODES IN GRAPH QUERY VISUALIZATION

The top of Figure 3 is a query result, before clustering is applied. In the middle,
clustering is applied via a node property denoting mission functions. At the bottom
of the figure, additional clustering is applied, based on a node property denoting key
terrain. Visually, such a clustering merges a set of nodes to a single one, with adjacent
edges to other (non-clustered) nodes preserved. This kind of interactive visual
clustering helps manage the complexity of graph analytics in CyGraph. For example,
in Figure 3, clustering the mission and key terrain nodes helps focus attention on the
alert destinations (triangles) and vulnerable hosts (ellipses) that are potential risks.

438

For time-varying models, CyGraph can dynamically visualize the evolving graph
state. This is shown in Figure 4. This capability depends on time stamps being defined
for edges during the ingestion process. Then, when a query result has a time defined
for each edge, the user interface enables the timeline feature. This feature builds a
time tick for each discrete event (unique value of time in the query result edge set).
The timeline then provides video controls (e.g., play, single step forward/back, speed)
for displaying the graph as edges appear over time.

FIGURE 4. INTERACTIVE TIMELINE FOR VISUALIZING GRAPH EVOLUTION OVER TIME

6. EXAMPLE CYGRAPH ANALYTICS

In this section, we describe a number of example applications of CyGraph for security
analytics. These examples all use simulated data sets (thus avoiding sensitivity issues),
which are designed to mimic patterns that we have observed in real datasets.

The first example (Figure 5) is based on intrusion detection alerts. CyGraph
automatically infers the model (top left of the figure) from the populated graph. Nodes
are typed as either Compromised (for destinations of alerts reporting compromise)
or IpAddress (sources/destinations for other general kinds of alerts), rendered as in
the legend. An edge is one or more alerts from source to destination.

439

FIGURE 5. GRAPH MODEL BASED ON INTRUSION ALERTS

One use for risk analysis is identifying attack reachability in a particular direction,
consistent with adversary lateral movement. This pattern is expressed in the CyQL
query language via the hops($numHops) clause, as examined in Figure 6.

The upper left of Figure 6 shows the results for the full (unconstrained) query. The
other portions of the figure show query results for hops(2) (upper right), hops(3)
(lower left), and hops(4) (lower right). Queries with larger values of $numHops
are more tightly constrained, in the sense of matching deeper traversal. Smaller (more
loosely constrained) values of $numHops yield larger matching subgraphs.

Operationally, an analyst can adjust trajectory depth according to analytic need. One
can begin with a larger value of $numHops to discover deep network infiltration as
a higher-priority incident. Then, as deeper-level (and more rarely occurring) incidents
are resolved, more shallow ones can be investigated. For example, an organization can
set the trajectory depth such that there are available resources available to investigate
the resulting graph query match.

440

FIGURE 6. GRAPH QUERY RESULTS FOR DIFFERENT TRAJECTORY DEPTHS

Clauses in CyGraph can be combined for further constraining query results.
Semantically, this is a conjunction (Boolean AND), in the sense that conditions in
all clauses must match in the query results. This is examined in Figure 7. Here, we
combine the hops() clause with endType(), which constrains matching paths to
end with a node of type Compromised.

As a use case for operational security, this example focuses on a more severe intrusion
alert category as the locus of potential lateral movement by an adversary. Comparing
the upper left of Figure 7 (no endType constraint) with the upper right of Figure
6 (with endType constraint), we see the result of constraining the endType (for
trajectory depth 2). The query result is much smaller, with all trajectories ending at
nodes of type Compromised. In terms of security analysis, this focuses on paths
leading to (reportedly) compromised hosts, e.g., for investigating events leading up
to those in question. We see the same kind of result for Figure 7 (upper right) versus
Figure 6 (lower left), this time with a trajectory depth of 3. For alert response, this is
tracing the investigation deeper into the potential attack.

441

We now consider a more complex CyGraph example, shown in Figure 8. Like real-
world data, such an unconstrained graph visualization is difficult to understand in
its entirety. This underscores the need for CyGraph to extract ‘needle in haystack’
patterns of cyber risk, focused on mission protection.

FIGURE 7. MULTIPLE CLAUSES IN QUERIES

442

FIGURE 8. GRAPH POPULATED FROM MISSION FUNCTIONS, INTRUSION ALERTS, NETWORK
FLOWS, AND HOST VULNERABILITIES

The graph in Figure 8 is populated via a process that transforms host vulnerabilities,
network flows, intrusion alerts and mission functional dependencies (i.e., the data
sources in Figure 9) to a property-graph model. CyGraph automatically infers the
model from the populated graph database, which is the right side of Figure 9.

443

FIGURE 9. GRAPH VISUALIZATION LEGEND, DATA SOURCES, AND GRAPH MODEL FOR FIGURE 8

In this model, mission nodes are connected to one another (and to key cyber terrain)
in terms of their dependencies (from ‘provides’ to ‘needs’). Alert edges connect
source and destination nodes of various types: key terrain, compromised (assumed
vulnerable), vulnerable (not compromised), and other general alerts sources and
destinations. General addresses observed in network flows which are not associated
with alerts are connected to each other and to alert addresses via flow edges. In this
way, network flows serve to fill in potential gaps from adversary activity not detected
by intrusion detection (false negatives).

We now apply queries to the graph in Figure 8, in which various combinations of
CyQL clauses match subgraphs of interest for analyzing this richer security model.
These query clauses generally follow the pattern of constraining paths to start at risky
elements and end at high-value mission elements, with intermediate constraints that
tune analytic focus. Our examples here also demonstrate another kind of strategy for
operational security – tightly constraining queries to initially focus on riskier patterns,
then subsequently relaxing constraints to uncover new patterns of the next higher
priority.

The top of Figure 10 is the query result for a significantly risky pattern – reported
compromises that lead to mission functions within three steps. This query result shows
that a compromised node is the source of another alert whose destination is key cyber
terrain which supports a mission function. There is also traffic flow (dashed arrow) to

444

another key terrain node that supports a mission function. The traffic from KT 2 to KT
6 might warrant deeper inspection for potential missed detections (false negatives).

In the bottom of Figure 10, query constraints are relaxed somewhat to expand the
analytic scope. In particular, the unlimited trajectory depth via hops(*) admits
paths of any depth leading to mission nodes, and startType(AlertSrc)
has paths starting at alert sources (any severity of alert) rather than compromised
destinations. This query result shows additional alert trajectories (all starting from
node a), including ones that end on vulnerable hosts, which have traffic to other key
terrain supporting other mission functions.

FIGURE 10. RISKY PATHS TO MISSION FUNCTIONS

Next, we apply the undirected() clause of CyQL, which explores nearness
by ignoring path directionality. This is shown in Figure 11. Here, we again apply
startType(Compromised), along with endType(KeyTerrain), which
stops at key terrain rather than going beyond to mission functions that depend on
them. We also apply a more constrained hops(1,2) that admits only paths of depths
one or two.

445

FIGURE 11. IGNORING DIRECTIONALITY IN QUERIES

This query finds compromise-related paths in addition to those in Figure 10. This
includes nine compromised nodes that communicate with key terrain KT 7, which
we find by having the query end at key terrain rather than mission functions. As we
show in Figure 12, key terrain KT 7 does not have a known mission function that it
supports, so this query identifies risk to such nodes. The query in Figure 11 also finds
compromised node p.8, which communicates with KT 1. In this case, the network flow
has KT 1 as the source (e.g., the initiator of the flow). By ignoring directionality, this
admits the possibility of general communication types, e.g., involving attacks against
client-side vulnerabilities.

The left side of Figure 12 shows all mission dependencies in this graph model.
Mission dependencies are represented as edges of type MISSION, between key
terrain or mission functions, oriented from ‘provides’ to ‘needs.’ Thus, the CyQL
clause edgeType(MISSION), with no other query conditions, finds all such
dependencies. Formally, because there is no hops clause, the query result is the union
of edges rather than path trajectories.

The right side of Figure 12 finds all vulnerable hosts that are relevant to a particular
mission function. The clause startType(Vulnerable) causes paths to start
at vulnerable nodes. The clause endId(‘function 4’) causes paths to end at
function 4. The hops(*) allows paths of any depth.

446

FIGURE 12. ALL MISSION DEPENDENCIES (LEFT) AND VULNERABILITIES FOR A PARTICULAR
MISSION FUNCTION (RIGHT)

7. SUMMARY AND CONCLUSIONS

Maintaining situational understanding and a common operating picture in cyberspace
requires making sense of complex relationships among aspects as varied as security
posture, cyber threats, security alerts, and mission dependencies on cyber assets. The
volume and complexity of data needed for security operations are far too large for
manual inspection or analysis. These challenges multiply with the need to go beyond
considering isolated events, matching single-step rules, or generating summary
statistics, which yield limited insight into complex adversary actions.

CyGraph creates a unified multi-relational graph model of cyber terrain, events,
and mission dependencies. This rich repository of relationships among cyberspace
and mission elements supports advanced analytic and visual capabilities. Through
pattern-matching queries, CyGraph discovers clusters of high-risk activity from the
swarm of complex interrelationships. This allows cyber operators to more easily
understand evolving cyberattack situations, and to recommend best courses of action
to commanders. By including mission dependencies on cyber assets, CyGraph shows
how cyberspace activities influence mission success.

In CyGraph, domain-specific graph queries extract nuggets of important patterns
from the swarm of data through query clauses that fine-tune graph path trajectories
during query matching. These queries uncover multi-step graph reachability from
vulnerabilities and threats to key cyber assets and mission functions. The domain-
specific language provides a layer of abstraction that simplifies the operational burden.
CyGraph also infers the underlying data model from a populated graph database,
presenting that to the analyst to further aid in formulating queries.

447

CyGraph has a schema-free data model for flexibility in combining various types
of relationships, aimed at addressing a wide variety of analytical questions. It is
implemented as a 3-tier client-server web application with a graph database or triple
store backend and interactive graphical interface in the browser. CyGraph employs a
combination of powerful graph-based queries and advanced interactive visualization.
It thus provides a significant capability to enable the storage and processing of diverse,
mission-relevant cyber data at scale while making the technology readily accessible
to cyber analysts. This in turn enables more accurate and rapid decision making for
command and control.

CyGraph includes a number of custom capabilities for interactively visualizing and
navigating graph query results. This includes clustering nodes according to various
criteria, and dynamic rendering of time-varying graph evolution. Overall, these
analytic and visual capabilities enable the discovery and understanding of ‘needle in
haystack’ patterns of cyber risk focused on mission assets.

REFERENCES

[1] 	 G. Conti, J. Nelson, and D. Raymond, ‘Towards a Cyber Common Operating Picture,’ in 5th NATO
International Conference on Cyber Conflict, Tallinn, Estonia, 2013.

[2] 	 S. Noel, D. Bodeau, and R. McQuaid, ‘Big-Data Graph Knowledge Bases for Cyber Resilience,’ in NATO
IST-153 Workshop on Cyber Resilience, Munich, Germany, 2017.

[3] 	 M. Rodriguez and J. Shinavier, ‘Exposing Multi-Relational Networks to Single-Relational Network
Analysis Algorithms,’ Journal of Informetrics, vol. 4, no. 1, pp. 29-41, 2009.

[4] 	 B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer, ‘DAG-Based Attack and Defense Modeling: Don’t
Miss the Forest for the Attack Trees,’ Computer Science Review, Vols. 13-14, 2014.

[5] 	 H. S. Lallie, K. Debattista, and J. Bal, ‘An Empirical Evaluation of the Effectiveness of Attack Graphs and
Fault Trees in Cyber-Attack Perception,’ IEEE Transactions on Information Forensics and Security, vol.
13, no. 5, 2017.

[6] 	 S. O’Hare, S. Noel, and K. Prole, ‘A Graph-Theoretic Visualization Approach to Network Risk Analysis,’
in IEEE Workshop on Visualization for Computer Security, Cambridge, MA, 2008.

[7] 	 S. Jajodia, S. Noel, P. Kalapa, B. O’Berry, M. Jacobs, E. Robertson, and R. Weierbach, ‘Network Attack
Modeling, Analysis, and Response’. US Patent 7,904,962, 8 March 2011.

[8] 	 S. Noel and S. Jajodia, ‘Attack Graph Aggregation’. US Patent 7,904,962, 1 December 2009.
[9] 	 S. Noel and S. Jajodia, ‘Metrics Suite for Network Attack Graph Analytics,’ in 9th Annual Cyber and

Information Security Research Conference (CISRC), Oak Ridge National Laboratory, Tennessee, 2014.
[10] 	 K. Ingols, R. Lippmann, and K. Piwowarski, ‘Practical Attack Graph Generation for Network Defense,’ in

Annual Computer Security Applications Conference, 2006.
[11] 	 RedSeal Networks, [Online]. Available: http://www.redsealnetworks.com/. [Accessed 18 February 2018].
[12] 	 Skybox Security, [Online]. Available: http://www.skyboxsecurity.com/. [Accessed 18 February 2018].
[13] 	 Sqrrl, [Online]. Available: https://sqrrl.com. [Accessed 18 February 2018].
[14] 	 S. Noel, E. Harley, K. H. Tam, and G. Gyor, ‘Big-Data Architecture for Cyber Attack Graphs: Representing

Security Relationships in NoSQL Graph Databases,’ in IEEE Symposium on Technologies for Homeland
Security (HST), Boston, Massachusetts, 2015.

[15] 	 S. Noel, E. Harley, K. H. Tam, M. Limiero, and M. Share, ‘CyGraph: Graph-Based Analytics and
Visualization for Cybersecurity,’ in Cognitive Computing: Theory and Applications, Handbook of Statistics
35, Elsevier, 2016.

[16] 	 S. Noel and W. Heinbockel, ‘An Overview of MITRE Cyber Situational Awareness Solutions,’ in NATO
Cyber Defence Situational Awareness Solutions Conference, Bucharest, Romania, 2015.

448

[17] 	 W. Heinbockel, S. Noel, and J. Curbo, ‘Mission Dependency Modeling for Cyber Situational Awareness,’
in NATO IST-148 Symposium on Cyber Defence Situation Awareness, 2016.

[18] 	 S. Noel, J. Ludwig, P. Jain, D. Johnson, R. K. Thomas, J. McFarland, B. King, S. Webster, and B. Tello,
‘Analyzing Mission Impacts of Cyber Actions (AMICA),’ in NATO IST-128 Workshop on Cyber Attack
Detection, Forensics and Attribution for Assessment of Mission Impact, Istanbul, Turkey, 2015.

[19] 	 R. Punnoose, A. Crainiceanu, and D. Rapp, ‘Rya: A Scalable RDF Triple Store for the Clouds,’ in 1st
International Workshop on Cloud Intelligence, Istanbul, Turkey, 2012.

[20] 	 Defense Information Systems Agency (DISA), ‘DISA’s Big Data Platform and Analytics Capabilities,’
[Online]. Available: http://www.disa.mil/newsandevents/2016/Big-Data-Platform. [Accessed 30 May
2017].

[21] 	 C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and
Analytics Engine, Sebastopol, CA: O’Reilley Media, 2015.

[22] 	 The Apache Software Foundation, ‘Apache Accumulo®,’ [Online]. Available: https://accumulo.apache.org.
[Accessed 30 May 2017].

[23] 	 Wikipedia, ‘Host Based Security System,’ [Online]. Available: https://en.wikipedia.org/wiki/Host_Based_
Security_System. [Accessed 31 May 2007].

[24] 	 I. Robinson, J. Webber, and E. Eifrem, Graph Databases, Second ed., Sebastopol, CA: O’Reilly Media,
2015.

[25] 	 E. Eifrem, ‘Meet openCypher: The SQL for Graphs,’ [Online]. Available: https://neo4j.com/blog/open-
cypher-sql-for-graphs/. [Accessed 30 May 2017].

[26] 	 W3C Recommendation, ‘SPARQL 1.1 Query Language,’ 21 March 2013. [Online]. Available: https://
www.w3.org/TR/sparql11-query/. [Accessed 30 May 2017].

[27] 	 ‘What Is Splunk?,’ [Online]. Available: https://www.splunk.com. [Accessed 31 May 2017].
[28] 	 ‘About Wireshark,’ [Online]. Available: https://www.wireshark.org. [Accessed 31 May 2017].
[29] 	 ‘NVD – National Vulnerability Database,’ [Online]. Available: https://nvd.nist.gov.
[30] 	 S. Noel, ‘Interactive Visualization and Text Mining for the CAPEC Cyber Attack Catalog,’ in ACM

Interactive User Interfaces Workshop on Visual Text Analytics, 2015.
[31] 	 The MITRE Corporation, ‘Crown Jewels Analysis,’ [Online]. Available: http://www.mitre.org/publications/

systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-
jewels-analysis. [Accessed 31 May 2017].

[32] 	 The MITRE Corporation, ‘Cyber Command System (CyCS),’ [Online]. Available: http://www.mitre.org/
research/technology-transfer/technology-licensing/cyber-command-system-cycs. [Accessed 31 May 2017].

[33] 	 The Apache Software Foundation, ‘Apache Storm,’ [Online]. Available: http://storm.apache.org. [Accessed
1 June 2017].

[34] 	 Defense Information Systems Agency, ‘Assured Compliance Assessment Solution (ACAS),’ [Online].
Available: http://www.disa.mil/cybersecurity/network-defense/acas. [Accessed 24 May 2017].

[35] 	 S. McGillicudy, ‘Flow Data is Top Source for Network Analysis,’ [Online]. Available: https://www.kentik.
com/flow-data-is-top-source-for-network-analysis/. [Accessed 31 May 2017].

[36] 	 Sandia National Laboratories, ‘Computer & Information Sciences (Labs Accomplishments May 2017),’
[Online]. Available: http://www.sandia.gov/news/publications/lab_accomplishments/articles/2017/.
[Accessed 11 July 2017].

