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Mission-Focused Cyber 
Situational Understanding 
via Graph Analytics

Abstract: This paper describes CyGraph, a prototype tool for improving network 
security posture, maintaining situational understanding in the face of cyberattacks, 
and focusing on protection of mission-critical assets. CyGraph captures complex 
relationships among entities in the cyber security domain, along with how mission 
elements depend on cyberspace assets. Pattern-matching queries traverse the graph 
of interrelations according to user-specified constraints, yielding focused clusters of 
high-risk activity from the swarm of complex interrelationships. Analytic queries 
are expressed in CyGraph Query Language (CyQL), a domain-specific language 
for expressing graph patterns of interest, which CyGraph translates to the backend 
native query language. CyGraph automatically infers the structure of its underlying 
graph model through analysis of the ingested data, which it presents to the user for 
generating queries in an intuitive way. CyGraph has been experimentally validated in 
both enterprise and tactical military environments.
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1. INTRODUCTION

Through centuries of experience and modern advances in technology, military 
commanders can rely on a fairly sophisticated common operating picture (COP) of 
the kinetic battlespace. However, significant challenges remain for extending the 
COP to include cyberspace as an operational domain [1]. Such an extended COP is 
needed for achieving appropriate levels of resilience to attack, maintaining situational 
awareness and understanding, and providing command and control of cyber (and joint 
cyber/kinetic) operations [2]. A cyber-extended COP needs to support the analysis of 
complex interactions among disparate data for decision making.

This paper describes CyGraph, a prototype tool for improving cyber resilience, 
maintaining situational awareness in the face of cyberattacks, and focusing on 
protection of mission-critical assets. CyGraph builds rich graph models from various 
network and host data sources, fusing isolated data and events into a unified model. 
From this, cyber operators can apply powerful graph queries that uncover multi-
step graph reachability from threats to key cyber assets, as well as other patterns 
of cyber risk. In this way, the tool correlates and prioritizes alerts in the context of 
vulnerabilities and key assets. CyGraph analytics extract ‘needle in haystack’ patterns 
of cyber risk focused on mission assets, with interactive visualization of query results, 
giving a common operating picture of cyberspace.

Traditional graph formulations with entities (vertices) and relationships (edges) of a 
single homogeneous type lack the expressiveness required for representing the rich 
structures involved in analyzing cyber risk. CyGraph employs property graphs, i.e., 
attributed, multi-relational graphs with vertices and edges having arbitrary properties 
[3]. Property graphs have the power needed for expressing a range of heterogeneous 
vertex and edge types, which arise from combining data from a variety of sources into 
a coherent unified cyber security graph model.

Unlike previous graph-based tools that focus on specific analytic use cases against 
fixed data models, CyGraph employs a schema-free design with a property-graph data 
model. The specific security data model is defined implicitly, according to how source 
data are transformed to a property graph. To help analysts more easily work with 
such complex models, CyGraph automatically infers the underlying data model for 
a populated graph. It’s domain-specific query language provides a simplifying layer 
of abstraction from the native query language of the graph database implementation.

CyGraph has been tested in military environments, including at the enterprise 
backbone and tactical command levels. In this paper, for sensitivity reasons, we 
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describe CyGraph analytics through simulated data; these datasets mimic patterns 
that we have observed in real data.

2. PREVIOUS WORK

There has been considerable previous work in graph-based approaches to cyber 
security. For example, a review in 2013 [4] describes hundreds of papers that employ 
various kinds of graph representations for security, with over 30 categories just for 
the specific case of modelling network attacks and defenses with acyclic graphs. A 
more recent study [5] examines over 50 proposed graph-based security models, each 
having key differences in representation. The state of practice has reached a level of 
maturity such that various off-the-shelf tools (both commercial and governmental) 
have emerged for graph analytics in operational environments [6] [7] [8] [9] [10] [11] 
[12] [13].

The wide range of proposed graph representations address the fundamental issue 
that classical graph algorithms alone are insufficient for solving analytic problems 
in cyberspace. Instead, specific data models are needed that capture the structure and 
semantics of the various kinds of entities and their relationships. But a significant 
limitation of the current generation of tools is that they have fixed data models, which 
limits their scope and ability to adapt to changes in operational environments and 
analytic requirements.

The idea of leveraging graph database technology for cyber security analysis is 
first explored in 2015 [14]. A proof-of-concept version of the CyGraph tool, which 
is implemented as a Java-based application running on a single host, is described 
[15] [16]. The proof-of-concept tool was applied for some security use cases, using 
simulated data or isolated examples of real operational data [17] [18]. A particular 
limitation of these preliminary examples is that mission functional dependency 
relationships are analyzed separately from cyberspace relationships.

Based on our initial success in proving the CyGraph concept, we have developed 
a more mature and capable CyGraph tool. This advanced prototype is a web-based 
(JavaScript) client-server application, distributed across three machines (user web 
browser as GUI, middle-tier intermediary service, and back-end database service). 
Leveraging this architecture, we have implemented multiple technologies for the 
CyGraph back-end graph database, including support for Apache Rya [19] within the 
Big Data Platform (BDP) [20] developed by the US Defense Information Systems 
Agency (DISA). The advanced CyGraph prototype also integrates with the Elastic 
Stack [21] (for Neo4j) or Accumulo [22](for DISA BDP) for scalable data ingest and 
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intermediate storage. A high-level overview of this tool architecture is described in 
[2], although no specific analytic results are given there.

The new web-based CyGraph tool has been validated using real data in operational 
network environments, at enterprise-level scale. The analytic examples that we 
describe in this paper are abstracted versions of the kinds of results we obtained 
for real data (abstracted here to protect the sensitive real data). This includes the 
development and validation of joint models for cyberspace and mission functions, 
e.g., for showing mission risk and/or impact as we describe. The present work also 
experimentally validates that CyGraph’s loosely-coupled client-server architecture 
can support multiple back-end graph persistence technologies, while insulating the 
front-end functionality from the choice of back-end implementation. This in turn 
provides flexibility in matching the analytic architecture to the performance and 
scaling requirements for a given organization.

3. CYGRAPH MODEL

We begin by defining the formal structures that form the basis of an instance of a 
CyGraph model. A graph G = (N, E) is a pair of sets of nodes and edges. The edges 
are, themselves, ordered pairs of nodes (n1, n2) from N. A property graph is a graph in 
which the nodes and edges come equipped with attributes, that is, arbitrary key/value 
pairs describing properties of the elements. We generally assume that nodes and edges 
have some minimal structure. Namely, nodes have attributes for a unique identifier 
and a type. Edges also have an attribute describing their type. They additionally have 
attributes identifying their source and destination nodes. Additional attributes may 
include such things as location information, mission criticality, or traffic packet counts.

A CyGraph model instance is defined by the properties attributed to the nodes and 
edges, as well as any constraints that may be in effect. Typically, particular property 
graphs conforming to a CyGraph model instance are progressively built from 
heterogeneous data sources with records containing information about the nodes and 
edges. Rather than requiring a fixed schema for the data sources, CyGraph applies 
data transformations that map elements of the source data to nodes, edges, and their 
properties. Thus, these data transformations implicitly define an instantiated CyGraph 
model.

To better understand how a property graph is built, consider the process of reading 
in a record r from a data source. Assume the graph built so far is G = (N, E), and the 
transform T extracts information about two nodes, n1 and n2, and an edge e between 
them. The new graph is G’ = (N ∪ {n1, n2}, E ∪ {e}), where the properties of n1, n2, 
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and e are defined by the transform T. If n1 or n2 was already in N then we simply 
update their properties according to any extra information contained in record r. 

In general, any property (of nodes or edges) that has potential analytic value (in the 
sense of constraining graph queries) can be included as a node or edge property. The 
type for a node or edge can then be defined as an arbitrary function of its properties. 
Thus, the node and edge types depend on the source data, via the transformation to a 
CyGraph property graph.

For example, alerts from Host Based Security System (HBSS) [23] yield node types 
describing the category of the alert for the destination node, e.g., whether they are 
reconnaissance events (such as port scans) or represent actual host compromise. 
Network flow records yield the region in which the node is located (US, non-US, 
country of concern) or indicate that the node is key terrain (based on knowledge 
of services hosted there and mission dependencies). This transform prioritizes type 
information from HBSS alerts over the other two, so that if a host is in the US and 
is compromised, it is simply identified as compromised. One could easily define a 
different transform that extracts a type in the Cartesian product of the types defined by 
each data source. The choice of transform depends on the sort of questions one wants 
answered regarding the graph (i.e., the analytic queries).

Once CyGraph has constructed the property graph from its data sources, an analyst 
can explore the graph with queries expressed in CyGraph Query Language (CyQL), 
a domain-specific query language. An important aspect of graph structure pertains to 
reachability. CyQL allows for the specification of structural features of trajectories 
through a graph. When a query Q is applied to a graph G it results in a (possibly empty) 
subgraph G’ ⊆ G. This matching subgraph is then displayed in the user interface.

A directed trajectory is an alternating sequence of nodes and edges (n0, e1, n1,…, ek, 
nk) in which, for every 0 < i ≤ k, the source of ei is ni-1 and the destination is ni. An 
undirected trajectory is similar, except for any edge ei, its source and destination may 
be ni and ni-1 respectively. The length of a trajectory is the number of edges. The graph 
of a trajectory is ({n0,…,nk}, {e1,…,ek}) in which the sequence information has been 
forgotten. A trajectory t is a trajectory of graph G = (N, E), if the trajectory’s graph (N’, 
E’) is a subgraph of G (i.e. N’ ⊆ N and E’ ⊆ E).

CyQL specifies trajectories by constraining the number of hops, and the types of the 
initial node, the end node, and the edges. Queries are built from the following clauses 
with their associated semantics:
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•	 hops($numHops): A trajectory satisfies this clause if its length is 
$numHops.

•	 hops($minHops,$maxHops): A trajectory satisfies this clause if its 
length is between $minHops and $maxHops (inclusive).

•	 startType($type): Trajectory (n0, e1,…,nk) satisfies this clause if n0 is 
of type $type.

•	 endType($type): Trajectory (n0, e1,…,nk) satisfies this clause if nk is of 
type $type.

•	 startId($id): Trajectory (n0, e1,…,nk) satisfies this clause if the unique 
node identifier u(n0) of node n0 is equivalent to $id.

•	 endId($id): Trajectory (n0, e1,…,nk) satisfies this clause if the unique 
node identifier u(nk) of node nk is equivalent to $id.

•	 edgeTypes($types): A trajectory satisfies this clause if each edge is of 
one of the types in the comma separated list $types.

•	 undirected(): By default, satisfying trajectories must be directed. 
When this clause is used, undirected trajectories also satisfy the query.

A CyQL clause is a concatenated sequence of such clauses. A trajectory t satisfies a 
CyQL query Q (written t | = Q) if it satisfies all of the clauses. The result of applying 
Q to graph G is simply the union of all trajectories of G that satisfy Q. That is: 

Q(G) = {t ∈ trajectories of G: t | = Q}.

CyQL provides a key aspect of risk analysis in CyGraph. In terms of the semantics 
of attack paths, query trajectory through the property graph corresponds to multi-step 
attack (or attack reachability) through the network. Conceptually, the aspects of CyQL 
can be organized as shown in Figure 1.

FIGURE 1. GRAPH TRAJECTORY PATH CONSTRAINTS IN CYGRAPH QUERY LANGUAGE (CYQL)

The left side of Figure 1 represents elements of risk within a network; i.e., things 
that we are protecting against. By specifying such risk elements as constraints on the 
starting points of a query traversal, trajectories represent ‘downstream’ relationships 
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emanating from risk points. Conversely, the right side represents high-valued assets 
within the environment; i.e., things that we are trying to protect. Defining those 
things as constraints on the traversal ending points cause paths to be focused on 
those assets as reachable from the risky elements. CyQL clauses that occur between 
these starting and ending extremes generally serve to constrain path trajectories in 
particular ways that help tune analytic focus; e.g., for managing the trade-off between 
comprehensiveness of query results and cognitive overload.

CyQL queries involve identifying trajectories that start from nodes representing risk 
elements, and end in nodes representing priorities for protection. The set of trajectories 
can be further refined by specifying additional traversal constraints regarding the edge 
types or total path length. This serves to focus an analyst’s attention on the relationships 
that matter the most. By visualizing the results of CyQL queries, CyGraph allows 
users to quickly identify known risky patterns or anomalous structures that warrant 
further investigation.

For example, given the appropriate data sources, CyQL makes it straightforward to 
identify the set of hosts with vulnerabilities that reside within the same connected 
component as a key cyber asset. By limiting the query to vulnerable hosts within two 
hops of key cyber assets, one can more easily identify the vulnerable hosts that pose 
the greatest risks. Queries may also help to identify clusters within the graph that have 
interesting properties. A highly connected cluster of hosts with host-based alerts may 
be an indication of vigorous adversarial exploration and exploitation.

4. CYGRAPH ARCHITECTURE

CyGraph ingests data from various sources and normalizes it. It then transforms the 
elements of the normalized model into a graph model specific to the cyber security 
domain. Graph queries are issued from the client front end (translated from CyQL 
to native query language in a middle-tier service) and then executed on the backend 
database. The resulting query matches are then visualized in the web client (browser).

In this agile architecture, the graph model is defined by how the data sources are 
transformed into a property graph, rather than conforming to a predetermined schema. 
Model extensions are simply the creation of additional of nodes, relationships, and 
properties in the property graph model, and require no schema changes or other 
database renormalizing. CyGraph supports two options for backend data storage and 
query processing:

•	 Neo4j graph database [24] with normalized data in Elasticsearch [21].
•	 Apache Rya [19] RDF store with normalized data in Apache Accumulo [22].
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Each of these options is available as open-source software, and (with the exception 
of Rya) have commercial support available. The second option (Rya+Accumulo) is 
available as part of DISA’s Big Data Platform (BDP) [20].

In the CyGraph front-end analyst dashboard, graph pattern-matching queries are 
expressed in CyQL, which CyGraph compiles to Cypher [25] (for Neo4j) or SPARQL 
[26] (for Rya). This presents a simplifying layer of abstraction, designed specifically 
for the desired risk analysis, freeing the analyst from learning a complex general-
purpose query language.

Typical inputs to CyGraph fall under four categories:
1.	 Network Infrastructure. This captures the configuration and policy aspects 

of the network environment.
2.	 Security Posture. Specification of network infrastructure is combined with 

vulnerability data to map potential attack paths through the network.
3.	 Cyber Threats. This captures events and indicators of actual cyberattacks, 

which are correlated with security posture to provide context for risk analysis 
and attack response.

4.	 Mission Dependencies. This captures how elements of enterprise missions 
depend on cyber assets.

CyGraph relies on other tools and data sources to build its cyber security graphs. For 
example, the TVA/Cauldron tool [6] [7] [8] [9] can build network attack graphs from 
host vulnerabilities, firewall rules and network topology. CyGraph can ingest data for 
both potential and actual threats, including Splunk [27], Wireshark [28], the National 
Vulnerability Database (NVD) [29], and Common Attack Pattern Enumeration and 
Classification (CAPEC) [30]. For capturing mission dependencies on cyber assets 
[17] [18], CyGraph ingests models developed through other tools [16], including 
Crown Jewels Analysis (CJA) [31] and Cyber Command System (CyCS) [32].

The CyGraph implementation is schema-free, so the model is decoupled from the 
storage implementation. The particular way in which the data is transformed to a 
property graph determines an instantiated CyGraph model. So, for example, not all of 
the data sources in the four categories listed above are necessarily needed for useful 
analysis – often only a single data source is ingested.

Data is continually streaming in that must be analysed for cyber risk correlation 
and prioritization by CyGraph. Leveraging the open source Elastic Stack, the Beats 
platform provides agents for gathering data, with Logstash for transformation and 
ingest into Elasticsearch. A CyGraph web service then creates a property graph model 
and imports it into the CyGraph graph data base (Neo4j).
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There is a similar analytic flow for CyGraph deployment on BDP, in which data 
streams are processed by Apache Storm [33], stored in Accumulo [22] and queried in 
Rya [19]. In this analytic flow, the CyGraph data model is mapped to RDF. The result 
of a query is a combination of alerts, network flows and vulnerabilities represented 
as graph nodes and edges. The matching subgraphs for queries are typically orders of 
magnitude smaller than the full graph stored in Neo4j or Rya.

5. CYGRAPH OPERATION

After ingesting data from various sources, CyGraph maps the data to a property graph 
stored in a graph database. It automatically infers the underlying graph model through 
inspection of the graph database. It then presents the model to the user in the browser 
user interface as an interactive graph visualization.

The analyst can interact with this graph model to generate queries in the domain-
specific CyQL query language. In particular, user-selected combinations of edge types 
(diamonds) populate the CyQL edgeTypes($types) clause, which specifies edge 
types to be matched in a query. For example, edges of type IN define relationships 
between Machine nodes and Domain nodes, i.e., network machine membership in 
protection domains (e.g., subnets) [14].

Core clauses in CyQL define patterns of reachability through a graph, i.e., 
hops($numHops), hops($minHops,$maxHops), startType($type), 
endType($type), startId($id), endId($id), edgeTypes($type), 
and undirected(). CyQL includes other features for matching patterns in the 
cyber security domain [15], including keywords for host names, IP addresses, subnet 
address ranges, arbitrary Boolean combinations of clauses and wildcards in parameter 
values. CyGraph queries are stored for sharing and reuse.

Once a query is executed, CyGraph displays the query results, as shown in Figure 
2. Each query submission creates a new query pane, with tabs for selecting panes. 
The query results (matched subgraph) are visualized in a main panel. Optionally, the 
properties for selected nodes or edges are displayed below the graph visualization.
 



436

FIGURE 2. CYGRAPH WEB USER INTERFACE (QUERY RESULTS)

One of the user-interface options is to cluster elements of the visualized graph in 
particular ways, i.e., by user-selected nodes, incoming or outgoing edges for a node, 
or by node type. This is illustrated in Figure 3.
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FIGURE 3. CLUSTERING NODES IN GRAPH QUERY VISUALIZATION

The top of Figure 3 is a query result, before clustering is applied. In the middle, 
clustering is applied via a node property denoting mission functions. At the bottom 
of the figure, additional clustering is applied, based on a node property denoting key 
terrain. Visually, such a clustering merges a set of nodes to a single one, with adjacent 
edges to other (non-clustered) nodes preserved. This kind of interactive visual 
clustering helps manage the complexity of graph analytics in CyGraph. For example, 
in Figure 3, clustering the mission and key terrain nodes helps focus attention on the 
alert destinations (triangles) and vulnerable hosts (ellipses) that are potential risks.
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For time-varying models, CyGraph can dynamically visualize the evolving graph 
state. This is shown in Figure 4. This capability depends on time stamps being defined 
for edges during the ingestion process. Then, when a query result has a time defined 
for each edge, the user interface enables the timeline feature. This feature builds a 
time tick for each discrete event (unique value of time in the query result edge set). 
The timeline then provides video controls (e.g., play, single step forward/back, speed) 
for displaying the graph as edges appear over time.

FIGURE 4. INTERACTIVE TIMELINE FOR VISUALIZING GRAPH EVOLUTION OVER TIME

6. EXAMPLE CYGRAPH ANALYTICS

In this section, we describe a number of example applications of CyGraph for security 
analytics. These examples all use simulated data sets (thus avoiding sensitivity issues), 
which are designed to mimic patterns that we have observed in real datasets.

The first example (Figure 5) is based on intrusion detection alerts. CyGraph 
automatically infers the model (top left of the figure) from the populated graph. Nodes 
are typed as either Compromised (for destinations of alerts reporting compromise) 
or IpAddress (sources/destinations for other general kinds of alerts), rendered as in 
the legend. An edge is one or more alerts from source to destination. 
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FIGURE 5. GRAPH MODEL BASED ON INTRUSION ALERTS

One use for risk analysis is identifying attack reachability in a particular direction, 
consistent with adversary lateral movement. This pattern is expressed in the CyQL 
query language via the hops($numHops) clause, as examined in Figure 6.

The upper left of Figure 6 shows the results for the full (unconstrained) query. The 
other portions of the figure show query results for hops(2) (upper right), hops(3) 
(lower left), and hops(4) (lower right). Queries with larger values of $numHops 
are more tightly constrained, in the sense of matching deeper traversal. Smaller (more 
loosely constrained) values of $numHops yield larger matching subgraphs. 

Operationally, an analyst can adjust trajectory depth according to analytic need. One 
can begin with a larger value of $numHops to discover deep network infiltration as 
a higher-priority incident. Then, as deeper-level (and more rarely occurring) incidents 
are resolved, more shallow ones can be investigated. For example, an organization can 
set the trajectory depth such that there are available resources available to investigate 
the resulting graph query match.
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FIGURE 6. GRAPH QUERY RESULTS FOR DIFFERENT TRAJECTORY DEPTHS 

Clauses in CyGraph can be combined for further constraining query results. 
Semantically, this is a conjunction (Boolean AND), in the sense that conditions in 
all clauses must match in the query results. This is examined in Figure 7. Here, we 
combine the hops() clause with endType(), which constrains matching paths to 
end with a node of type Compromised.

As a use case for operational security, this example focuses on a more severe intrusion 
alert category as the locus of potential lateral movement by an adversary. Comparing 
the upper left of Figure 7 (no endType constraint) with the upper right of Figure 
6 (with endType constraint), we see the result of constraining the endType (for 
trajectory depth 2). The query result is much smaller, with all trajectories ending at 
nodes of type Compromised. In terms of security analysis, this focuses on paths 
leading to (reportedly) compromised hosts, e.g., for investigating events leading up 
to those in question. We see the same kind of result for Figure 7 (upper right) versus 
Figure 6 (lower left), this time with a trajectory depth of 3. For alert response, this is 
tracing the investigation deeper into the potential attack.
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We now consider a more complex CyGraph example, shown in Figure 8. Like real-
world data, such an unconstrained graph visualization is difficult to understand in 
its entirety. This underscores the need for CyGraph to extract ‘needle in haystack’ 
patterns of cyber risk, focused on mission protection.

FIGURE 7. MULTIPLE CLAUSES IN QUERIES
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FIGURE 8. GRAPH POPULATED FROM MISSION FUNCTIONS, INTRUSION ALERTS, NETWORK 
FLOWS, AND HOST VULNERABILITIES

The graph in Figure 8 is populated via a process that transforms host vulnerabilities, 
network flows, intrusion alerts and mission functional dependencies (i.e., the data 
sources in Figure 9) to a property-graph model. CyGraph automatically infers the 
model from the populated graph database, which is the right side of Figure 9.
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FIGURE 9. GRAPH VISUALIZATION LEGEND, DATA SOURCES, AND GRAPH MODEL FOR FIGURE 8

In this model, mission nodes are connected to one another (and to key cyber terrain) 
in terms of their dependencies (from ‘provides’ to ‘needs’). Alert edges connect 
source and destination nodes of various types: key terrain, compromised (assumed 
vulnerable), vulnerable (not compromised), and other general alerts sources and 
destinations. General addresses observed in network flows which are not associated 
with alerts are connected to each other and to alert addresses via flow edges. In this 
way, network flows serve to fill in potential gaps from adversary activity not detected 
by intrusion detection (false negatives).

We now apply queries to the graph in Figure 8, in which various combinations of 
CyQL clauses match subgraphs of interest for analyzing this richer security model. 
These query clauses generally follow the pattern of constraining paths to start at risky 
elements and end at high-value mission elements, with intermediate constraints that 
tune analytic focus. Our examples here also demonstrate another kind of strategy for 
operational security – tightly constraining queries to initially focus on riskier patterns, 
then subsequently relaxing constraints to uncover new patterns of the next higher 
priority.

The top of Figure 10 is the query result for a significantly risky pattern – reported 
compromises that lead to mission functions within three steps. This query result shows 
that a compromised node is the source of another alert whose destination is key cyber 
terrain which supports a mission function. There is also traffic flow (dashed arrow) to 
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another key terrain node that supports a mission function. The traffic from KT 2 to KT 
6 might warrant deeper inspection for potential missed detections (false negatives).

In the bottom of Figure 10, query constraints are relaxed somewhat to expand the 
analytic scope. In particular, the unlimited trajectory depth via hops(*) admits 
paths of any depth leading to mission nodes, and startType(AlertSrc) 
has paths starting at alert sources (any severity of alert) rather than compromised 
destinations. This query result shows additional alert trajectories (all starting from 
node a), including ones that end on vulnerable hosts, which have traffic to other key 
terrain supporting other mission functions.
 
FIGURE 10. RISKY PATHS TO MISSION FUNCTIONS

Next, we apply the undirected() clause of CyQL, which explores nearness 
by ignoring path directionality. This is shown in Figure 11. Here, we again apply 
startType(Compromised), along with endType(KeyTerrain), which 
stops at key terrain rather than going beyond to mission functions that depend on 
them. We also apply a more constrained hops(1,2) that admits only paths of depths 
one or two.
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FIGURE 11. IGNORING DIRECTIONALITY IN QUERIES

This query finds compromise-related paths in addition to those in Figure 10. This 
includes nine compromised nodes that communicate with key terrain KT 7, which 
we find by having the query end at key terrain rather than mission functions. As we 
show in Figure 12, key terrain KT 7 does not have a known mission function that it 
supports, so this query identifies risk to such nodes. The query in Figure 11 also finds 
compromised node p.8, which communicates with KT 1. In this case, the network flow 
has KT 1 as the source (e.g., the initiator of the flow). By ignoring directionality, this 
admits the possibility of general communication types, e.g., involving attacks against 
client-side vulnerabilities.

The left side of Figure 12 shows all mission dependencies in this graph model. 
Mission dependencies are represented as edges of type MISSION, between key 
terrain or mission functions, oriented from ‘provides’ to ‘needs.’ Thus, the CyQL 
clause edgeType(MISSION), with no other query conditions, finds all such 
dependencies. Formally, because there is no hops clause, the query result is the union 
of edges rather than path trajectories.

The right side of Figure 12 finds all vulnerable hosts that are relevant to a particular 
mission function. The clause startType(Vulnerable) causes paths to start 
at vulnerable nodes. The clause endId(‘function 4’) causes paths to end at 
function 4. The hops(*) allows paths of any depth.
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FIGURE 12. ALL MISSION DEPENDENCIES (LEFT) AND VULNERABILITIES FOR A PARTICULAR 
MISSION FUNCTION (RIGHT)

7. SUMMARY AND CONCLUSIONS

Maintaining situational understanding and a common operating picture in cyberspace 
requires making sense of complex relationships among aspects as varied as security 
posture, cyber threats, security alerts, and mission dependencies on cyber assets. The 
volume and complexity of data needed for security operations are far too large for 
manual inspection or analysis. These challenges multiply with the need to go beyond 
considering isolated events, matching single-step rules, or generating summary 
statistics, which yield limited insight into complex adversary actions.

CyGraph creates a unified multi-relational graph model of cyber terrain, events, 
and mission dependencies. This rich repository of relationships among cyberspace 
and mission elements supports advanced analytic and visual capabilities. Through 
pattern-matching queries, CyGraph discovers clusters of high-risk activity from the 
swarm of complex interrelationships. This allows cyber operators to more easily 
understand evolving cyberattack situations, and to recommend best courses of action 
to commanders. By including mission dependencies on cyber assets, CyGraph shows 
how cyberspace activities influence mission success.

In CyGraph, domain-specific graph queries extract nuggets of important patterns 
from the swarm of data through query clauses that fine-tune graph path trajectories 
during query matching. These queries uncover multi-step graph reachability from 
vulnerabilities and threats to key cyber assets and mission functions. The domain-
specific language provides a layer of abstraction that simplifies the operational burden. 
CyGraph also infers the underlying data model from a populated graph database, 
presenting that to the analyst to further aid in formulating queries.
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CyGraph has a schema-free data model for flexibility in combining various types 
of relationships, aimed at addressing a wide variety of analytical questions. It is 
implemented as a 3-tier client-server web application with a graph database or triple 
store backend and interactive graphical interface in the browser. CyGraph employs a 
combination of powerful graph-based queries and advanced interactive visualization. 
It thus provides a significant capability to enable the storage and processing of diverse, 
mission-relevant cyber data at scale while making the technology readily accessible 
to cyber analysts. This in turn enables more accurate and rapid decision making for 
command and control.

CyGraph includes a number of custom capabilities for interactively visualizing and 
navigating graph query results. This includes clustering nodes according to various 
criteria, and dynamic rendering of time-varying graph evolution. Overall, these 
analytic and visual capabilities enable the discovery and understanding of ‘needle in 
haystack’ patterns of cyber risk focused on mission assets.
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