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Abstract: One of the most critical issues in IT security is to establish a cost-
effective framework for cyber protection against possible threats. The overall 
security framework is divided into security activity areas, which can have a 
number of protection levels. Each level of one security activity area provides 
certain confidence and also requires some expenditure. As the budget level is 
predefined a critical question remains how to find out an adequate security 
profile for a certain cost level. As the behavior of cyber attackers and cyber se-
curity threats are continuously changing, there should not be just one model 
to construct an effective security mechanism but rather a variety of changing 
alternatives. Several methods have been proposed for cost optimization but 
they are limited by providing only one alternative. In this paper we propose 
an evolutionary approach as an alternative for optimizing IT security costs 
and for finding variants of security profiles for every cost level. Higher vari-
ability of security profiles will make the security organization more resistant 
to changing cyber attacks.
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INTRODUCTION

We have the challenge of ensuring information security under conditions of uncer-
tainty: how can organizations determine appropriate measures to enhance cyber 
security and allocate resources most efficiently? For finding out an optimal amount 
of resources a security costs function is proposed, where the total cost of security 
for a system is based on the cost of system security investments plus the cost of 
damage and cost of recovery from any security incidents (Olovsson, 1992). Despite 
the fact that the cost function also includes indirect costs in this study we take into 
account only the direct costs of security investments. Usually, available resourc-
es are limited and therefore it is needed to optimize applied security measures to 
achieve the highest attainable confidence level. The security framework is divided 
into several security activity areas that can have a number of levels providing cer-
tain confidence. As the number of security activity areas increases the number of 
different combinations of security measures or profiles grows exponentially. For 
finding an optimal security profile several optimization methods are used, such as 
a brute force optimizer and a discrete dynamic programming method (Kivimaa, 
2009; Ojamaa, Tyugu, & Kivimaa, 2008).

It is argued that the dynamic programming may have some problems related to 
independence of security activity areas and additivity and therefore the solutions 
may not to be optimal (Kivimaa, 2009). This additivity restriction also limits the 
search space and it is difficult to find out alternative security profiles that provide 
the same level of confidence. Therefore our aim is to apply an additional method to 
find out whether the solutions are adequate and also identify alternative security 
profiles for a certain cost level. We decided to use an evolutionary algorithm as a 
universal method for complex optimization in many fields. Genetic algorithms are 
also actively used in IT security and intrusion detection systems (e.g. Li, 2004; Sin-
clair, Pierce, & Matzner, 1999).

Evolutionary algorithms are based on a Darwinian natural selection process and 
form a class of population-based stochastic search algorithms (Dracopoulos, 2008; 
Eiben & Smith, 2003; Holland, 1975). In the evolutionary process for all the individ-
uals representing candidate solutions some perturbations (e.g. crossover, mutations) 
are applied to generate variation and thereafter a selection procedure, based on the 
value of a fitness function, is enforced. The selection mechanism prefers individuals 
that are the best candidates for the solution of the optimization problem. To main-
tain the variation in population in our experiments the population was divided into 
subgroups and the selection process was performed within a group. This measure 
helped to avoid the optimization process to fall into a local optimum and provided 
better results. To solve the optimization task we have established an evolutionary 
framework and applied it to the IT security cost/confidence data consisting of 9 se-
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curity areas (CyberProtect, see Table 1). In the following optimization tasks we had 
two goals: to minimize the costs and to maximize the integral security confidence.

This paper is divided into four main parts. In the first part the security model and 
the data is described that we use in our optimization tasks. Next we introduce the 
basis of evolutionary algorithm. Thereafter the results of optimization are given. 
Finally the results are discussed and conclusions are made.

1. SECURITY MODEL
The main challenge in IT security is to ensure required information security under 
conditions of uncertainty. To achieve the goal an organization has to define ad-
equate security levels and to determine appropriate measures for increasing cyber 
security and allocating resources most efficiently. Usually certain risk assessment 
methods are used for performing detailed risk analysis. For small and medium size 
enterprises the detailed risk analysis is relatively expensive and also the available 
resources for IT security are limited. Therefore a simpler version of the security 
model is needed which provides possibility to achieve maximum possible confidence 
with limited resources.

Table 1. IT security costs/confidence data. 9 security measures

Security measure \ level Level 0 Level 1 Level 2 Level 3

1. User Training Cost 0 4 8 12
Confidence 0 30 50 65

2. Redundant Systems Cost 0 8 10 12
Confidence 0 40 70 95

3. Access Control Cost 0 1 2 4
Confidence 0 40 70 95

4. Antivirus Cost 0 2 4 7
Confidence 0 60 80 95

5. Backup Cost 0 1 2 4
Confidence 0 40 70 95

6. Disconnection Cost 0 2 4 7
Confidence 0 40 60 75

7. Encryption Cost 0 2 4 7
Confidence 0 60 80 95

8. Firewall Cost 0 2 4 7
Confidence 0 30 50 65

9. Intrusion Detection Cost 0 1 2 4
Confidence 0 25 45 60
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In this research we rely on the graded security model, which is an improved and 
combined version of two security methodologies: the US DoE graded security meth-
odology (best practice security methodology to specify needed security measures 
for needed security levels; DOE, 1999) and Estonian governmental data classifica-
tion (metrics to specify needed security level; ISKE, 2009).  “The system includes 
knowledge modules (rule sets) in the form of decision tables for handling expert 
knowledge of costs and confidence, as well as for selecting security measures for 
each security group depending on the required security level.” [Kivimaa, et. al., 
2009] Basic ideas of graded security are presented as a decision table ‒ information 
security activities areas/their realization levels and information security require-
ments/their levels in a dependency matrix. As an example a very simple (9 security 
subareas) decision table/dependency matrix is given in the Appendix.

The example used in the experiments of this paper is an educational security frame-
work CyberProtect version 1.1 (CyberProtect, Table 1). It determines how hardware/
software/firmware can be secured based on nine security activity/measure groups 
and their high/middle/low level realization of costs and confidence. The cost in this 
example covers only the costs of security investments and is given in conventional 
units. The confidence level is in the scale of 0…100 and the value is provided as an 
expert opinion. Each security measure can have a certain level that determines re-
quired resources to achieve confidence. The baseline security methodologies define 
conventional goals of security as confidentiality (C), integrity (I), availability (A), and 
mission criticality (M). For each goal a finite number of security levels have been 
determined. For example, four levels 0, 1, 2, 3 for representing required security 
and protection can be used, where the lowest level 0 denotes unnecessary of special 
protective measures. [Kivimaa, et. al., 2009]

We can formulate an optimization problem as follows: find the abstract security 
profile with the best (highest) value of confidence for given amount of resources. As 
we have a limited amount of available resources r our goal is to achieve a maximum 
security level
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We have an optimization problem with two goals: to minimize resources on the 
interval [rmin; rmax] and to maximize security, guaranteeing at least the levels pre-
scribed by a given security class. We are going to solve this problem by finding a 
function that gives an abstract security profile that has maximum value of a secu-
rity confidence function given by the weighted mean security for any given value 
of resources on the interval [rmin; rmax]. The task of the optimization application is 
to find the best combination of security measure levels that provides the maximum 
confidence at a cost level.

In previous experiments mainly two optimization algorithms were used to solve our 
task ‒ one of them was a brute force optimizer and the other one was based on a 
Pareto optimality (Pareto frontier or Pareto set) and discrete dynamic programming 
method (Ojamaa, et al, 2009).  This problem can be solved by means of building a 
Pareto optimality trade-off curve that explicitly shows the relation between used 
resources and security confidence. Then, knowing the available resources, one can 
find the best possible security level that can be achieved with the resources and 
specify the security measures to be taken.

For n security measures groups and k levels for information security requirements/
goals we have totally kn abstract security profiles to be considered. The number of 
security measures groups may be in practice up to 30 or even more and in Estonian 
data classification a 4-level version for security goals is used. This gives a number of 
abstract security profiles: 430.

With the brute force method we must do rkn computations and with the dynamic 
programming method r2kn (r is number of possible values of resources, k is the 
number of security levels, n is number of security measures groups). For example, 
if we have a 100 budget points curve for 25 security subareas then it takes ~10 sec-
onds to calculate it with the Pareto optimality & dynamic programming and by the 
Brute Force method it would take ~10 years to calculate (Kivimaa, 2009).

To use Pareto optimality and dynamic programming in optimization security activi-
ties areas/security measures groups must be not dependent from each other’s and 
their security measures to realize their levels must be additive. Independency in IT 
security activities is quite problematic for some security areas, but in first approxi-
mation it is acceptable if we use certain specific logic of description (for example, the 
IT security experts/specialists training costs are included into the costs of concrete 
security activities areas/areas levels and some other analogical principles might be 
followed).

The second weakness of dynamic programming is that it has some difficulties in 
finding alternative security profiles for a certain optimal cost/confidence level. To 
get over those weaknesses and to measure adequacy of the dynamic programming 
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we decided to use an evolutionary algorithm as an alternative method. We expect 
that the evolutionary approach is not stuck to such limitations and can provide re-
sults with a quite reasonable time.

2. EVOLUTIONARY ALGORITHMS
An evolutionary algorithm is a population-based stochastic search algorithm. The 
basic principle is to iteratively generate random variation within individuals of pop-
ulation, that represents the candidate solution to the problem, and to select the 
fittest candidates that provide the best solution to the task in hand. The view that 
random variation provides the mechanism for discovering new solutions (Michale-
wicz & Fogel, 2004) was inspired by the process of natural evolution.

The idea of using Darwinian principles of evolution to solve some combinatorial 
optimization problems arose with the invention of computers. Afterwards several 
approaches were developed like evolutionary programming (Fogel, Owens, & Walsh, 
1966) and genetic algorithms (Holland, 1975) in the early stage of the study of 
evolutionary algorithms. Now there are a wide variety of approaches that can be 
described as belonging to the field of evolutionary computing. The algorithms used 
in the field are termed as evolutionary algorithms (Dracopoulos, 2008). The most 
important characteristics of evolutionary algorithms are as follows:

• Representation. Each candidate solution to the problem in hand is represented 
as an individual. The characteristics of the individual are encoded by genes. 
The set of individuals form a population.

• Fitness. The quality of a candidate solution is measured by a fitness function. 
The fitness function is used to measure how good an individual is. Fitter solu-
tions have a higher probability to survive and to contribute their characteris-
tics to offspring.

• Variation. Variation operators (e.g. crossover, mutations) are applied to the 
individuals that modify the population of solutions dynamically.

• Selection. The average fitness is improved over time as a selection mechanism 
is applied and the fittest individuals are selected for the next generation (sur-
vival of the fittest).

The basis of an evolutionary algorithm is simple. First, a population of initial can-
didate solutions has to be generated randomly. Thereafter iteratively a number of 
variation generation operators are applied and new generations are selected based 
on the fitness values of individuals.
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2.1 ALGORITHM
There are several modifications proposed to the basic algorithm and we have adapt-
ed some aspects of cooperative co-evolutionary algorithms (see Machado, Tavares, 
Pereira, & Costa, 2002; Potter & De Jong, 2000). In this approach the problem is 
decomposed into subcomponents that represent potential components to the global 
problem (see more details in Selection). As the problem in hand was not very com-
plex we decided to decompose a population P into S subpopulations Ps instead of 
decomposing a problem. The aim was to maintain variety within the population as 
a whole.

The algorithm can be defined then as follows:

 - for each subpopulation S do:

 - Initialize population Ps(0)

 - Evaluate all individuals from Ps(0)

 - While termination condition not met repeat:

 - For each subpopulation S do:

 - Apply crossover and mutation operators to individuals of Ps(t) and ob-
taining a set of offspring Os(t)

 - Evaluate individuals from Os(t)

 - Combine Ps(t) and Os(t) obtaining Ps(t+1)

During the evaluation the fitness value (average confidence level) of an individual is 
found. The fittest from the ordered set of parents and offspring are selected for the 
next generation.

2.2 REPRESENTATION
How to choose a suitable genetic representation of an individual is a key issue in evo-
lutionary computing. Each individual has two representations: phenotype (outside) 
and genotype (inside). Object forming possible solutions within the original problem 
context are referred as phenotypes, while their encoding, that is, the individuals 
within the evolutionary algorithm, are called genotypes (Eiben & Smith 2003). Phe-
notypic characteristics of the candidate solution are encoded by individual’s geno-
type. The genes are the functional units to carry inherited information and they can 
be arranged in chromosomes. In evolutionary algorithm a chromosome can be a 
string of symbols or a vector of numerical variables (Gen & Lin, 2008). The complete 
inherited information is called a genome.
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Genotype contains inherited information to build an individual in phenotype space. 
In the natural systems the mapping from genotype to phenotype is not direct. In the 
context of evolutionary algorithms three classes of possible mappings are defined: 
direct, developmental and implicit (Floreano, Dürr, & Mattiussi, 2008). In a direct 
representation, there is a one-to-one mapping between the parameter values of the 
task in hand and the genes that compose the genetic string. In developmental rep-
resentations which are used mostly in case of large problems the specification of a 
developmental process is genetically encoded which in turn constructs the desired 
phenotype. In case of implicit encoding like in biological gene networks, the interac-
tion between the genes is not explicitly encoded in the genome, but follows implicitly 
from the physical and chemical environment in which the genome is immersed.

In this paper direct mapping is used and each candidate solution is represented as 
a chromosome consisting of the same amount of genes as the number of security 
activity areas. Each gene denotes a security level of one security activity area. For 
example, if there are 3 security levels plus one for the lowest level 0 denoting ab-
sence of special protective measures four possible values for one gene (0, 1, 2, 3) 
can be defined. If there are 9 security activity areas then a chromosome can be G = 
{1 0 3 2 3 1 2 1 3}.

2.3 FITNESS
The goal of the evolutionary search is defined as a user-specified measure of the 
quality or the fitness of the individuals. The algorithm is expected to find in the 
search space an individual with maximum quality or fitness. In our experiments the 
fitness is measured as a weighted average of confidence levels of security activity 
areas.

2.4 VARIATION
The initial population is usually generated randomly and therefore it is highly vari-
able. The movement in the search space is based on random changes in chromo-
somes generated by reproduction and applying several variation operators. The re-
production is carried out with some stochastic mutation and recombination of the 
parents in order to explore new regions the search space and combine the informa-
tion carried by each parent (Gen & Lin, 2008).

The main operator to generate variation in population is the crossover. There are 
introduced several approaches to select parents and to recombine their genetic in-
formation. Recombination, the process whereby a new individual is created from 
the information contained within two parents, is considered to be one of the most 
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important features in evolutionary algorithms. In the experiments we use the cross-
over operator called n-point crossover, where the value of n is 2. The basic steps of 
applying a crossover operator are as follows: first, to select two parents based on 
some restrictions (if there are any) and next, select segments of genes from both 
parents to form the genes of an offspring. The second parent is selected randomly 
from the whole population. An example is illustrated in Figure 1. A segment {4, 3} is 
taken from one parent and is transferred to the other parent’s genetic code.

Figure 1. n-point crossover. n = 2.

Several variation operators are used to make variation in population and to move in 
the search space.

Random mutation is the change of the value of one gene. For example, the value of 
the first gene {1} is replaced by the new value {3}.

Figure 2. Random mutation of a single gene

Swap operator: selects two genes and swaps them. For example, genes {5} and {3} are 
selected and swapped.

Figure 3. Swap mutation

Inversion operator: selects a segment of genetic code and reverses order of the genes 
belonging to it. For example, genes {1 5} are reversed {5 1}.

Figure 4. Inversion mutation

Insertion operator: selects a gene and inserts it in another place. For example, gene 
{1} is moved to the end of the genetic code.
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Figure 5. Insertion mutation

Displacement operator: selects a segment of genetic code and inserts it in another 
place. For example, genes {1 5} are moved to the end of the genetic code.

Figure 6. Displacement mutation

When mutation operators are applied, the genes are validated whether they are in 
accordance to the restrictions of the task in hand. When the code does not meet the 
restrictions it is not used in the further processing.

2.5 SELECTION
The selection is a process to select survivals for the next generation. During each 
generation, the chromosomes are evaluated, using some measures of fitness. A new 
generation is formed by selecting some parents and offspring, according to their fit-
ness values, and rejecting others to keep the population size constant.

Figure 7. An example of a tournament selection of 2 sub-population consisting of 2 indi-
viduals. 4 candidates (2 parents P and 2 offspring O) are competing for selection 
for next generation within a sub-population

a) After reproduction and mutation a new sets of individuals (offspring) are formed 
in each subpopulation
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Figure 8. Selection and regrouping of the initial population.

b) For selection the parents and offspring within a sub-group are ordered based on 
the fitness value and the fittest are selected for the next generation

In this study the selection method is based on the tournament selection strategy, 
which is deterministic. The tournament selection is effective, because it does not 
require any global knowledge of the population and it also avoids falling into a local 
optimum by maintaining variety in the population. This strategy also enhances the 
search space and allows exploring it in parallel. To perform tournament selection 
we have to define the tournament size k. The members of a tournament are usu-
ally selected randomly, but we use a deterministic strategy where the competing 
sub-populations are predefined. For example, the tournament or subpopulation size 
is defined as 2. After reproduction and mutation phase (Figure 7) 4 candidates (2 
parents and 2 offspring) compete for being selected for the next generation (Figure 
8). The selection is performed locally and therefore the winning members of one 
tournament may have a weaker fit value than the least-fit members of the other 
tournament. Further mutations in such a weak subpopulation may reveal some 
properties of an individual that are needed to reach the global optimum and are not 
represented in other subgroups.

3. EXPERIMENTS
For experiments we had the IT security cost/confidence data consisting of 9 secu-
rity activity areas (CyberProtect; see Table 1). The aim of the optimization was to 
find the highest average confidence level for a given amount of resources. The op-
timization task is formed as a question (Kivimaa, 2009): “For every possible budget 
level, what is the maximum confidence one can expect?” In the optimization tasks 
the amount of resources (budget) was predefined form 1 to max+1. The max value 
equals the costs of the security measures of the highest level.
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Figure 9. Mean computational time to find optimal confidence value for 9 security areas 
(mean value of 5 experiments)

The first task was to measure the mean computational time to solve the optimiza-
tion problem. The second task was to find the cost/confidence optimality curve. The 
third task was to find out the cost/confidence optimality curve when the optimality 
was restricted by a security class. The fourth task was to identify adequate and 
equivalent security profiles for every cost level.

For the results presented in this section we used the following experimental set-
tings: crossover rate 0.49, mutation rate 0.2, swap rate 0.1, inversion rate 0.1, inser-
tion rate 0.1, and displacement rate 0.1. The number of generations was set as 30 
and population size 80, and the tournament or subpopulation size was 5. The cost 
of the highest security level (C3I3A3M3) was 64 units and the optimization was 
performed for the cost levels from 1 to 65 units. With each cost level 5 experiments 
were performed. The rates for crossover and mutation operators were selected as 
the best practice of solving other optimization problems. Despite the optimization 
tasks are similar the rates might not be the best for solving the security optimiza-
tion task. Additional computation time is required if either the variation rate is very 
low or high, as unnecessary calculations are needed to be performed.

As a result the average time for optimization was between 0.4 and 0.45 seconds (Fig-
ure 9). The task two was to find the cost/confidence optimality curve (yellow dots in 
Figure 10). For interpretation a color coding of dots in the curve is used as follows: 
red dots ‒ all security activities area’s security levels are � and at least one is < than 
required; green dots ‒ all security goals/their required levels are exactly achieved; 
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yellow dots ‒ at least one security level is less and at least one security level is more 
than required; blue dots ‒ all security levels are � and at least one security level is 
> than required. The curve represents the optimal value of weighted mean security 
confidence depending on the resources that are used.

Table 2. The experimental dependency matr ix of 9 security measures

Security measure C0 C1 C2 C3 I0 I1 I2 I3 A0 A1 A2 A3 M0 M1 M2 M3

1. User Training 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
2. Redundant Systems 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
3. Access Control 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
4. Antivirus 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3
5. Backup 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 3
6. Disconnection 1 1 2 3 1 1 2 3 1 1 2 3 1 2 3 3
7. Encryption 0 0 1 3 0 1 2 3 0 0 0 0 0 0 2 3
8. Firewall 0 1 2 3 0 1 2 3 0 1 2 3 0 2 3 3
9. Intrusion Detection 0 1 2 3 0 1 2 3 0 1 2 3 0 2 2 3

Next experiments were performed when the limitation of security class was applied. 
In this study an experimental dependency matrix of connections between security 
measures and conventional goals of security was used (Table 2). For example, as the 
security class is defined C1I1A1M1 then the highest level of a security measure is 
selected and the security configuration is (1, 1, 1, 1, 1, 2, 1, 2, 2). The comparison of 
confidence values between the security classes C3I3A3M3 and C1I1A1M1 is given 
in Figure 10. As there are more available resources than are needed to satisfy the 
restrictions caused by a security class the security measures cannot be weaker than 
determined by the security class.

Figure 10. Costs/confidence optimality curve using security-class limitation. Security class 
C3I3A3M3 versus C1I1A1M1. Optimal security configuration (1, 1, 1, 1, 1, 2, 1, 2, 
2)
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The final task was to obtain different security profiles. To find out different security 
profiles we ran experiments 35 times for every cost level. An extract of the results is 
given in Table 3. For example, when 34 unit of money was available (budget restric-
tion) then 5 equivalent security profiles were found.

Table 3. Equivalent security profiles for every cost/confidence level in case of 9 security 
measures. An excerpt

Security measure

No. Money Costs Confidence 1 2 3 4 5 6 7 8 9
…
88 34 34 62,22 1 4 4 2 4 2 3 3 3
89 34 34 62,22 1 4 4 3 4 2 2 3 3
90 34 34 62,22 1 4 4 3 4 3 2 2 3
91 34 34 62,22 1 4 4 2 4 3 3 2 3
92 34 34 62,22 1 4 4 2 4 3 2 3 3
93 35 35 62,78 2 1 4 3 4 4 3 3 4
94 35 35 62,78 2 1 4 3 4 3 4 3 4
95 35 35 62,78 2 1 4 3 4 3 3 4 4
96 35 35 62,78 2 1 4 4 4 3 3 3 4
97 36 36 64,44 1 4 4 3 4 3 3 2 3
98 36 36 64,44 1 4 4 2 4 3 3 3 3
99 36 36 64,44 1 4 4 3 4 2 3 3 3
100 36 36 64,44 1 4 4 3 4 3 2 3 3
…

4. CONCLUSIONS
The aim of the study was to evaluate whether the evolutionary approach is applica-
ble to the security of the cost/confidence optimization task and whether it allows us 
to generate equivalent security profiles for every cost level. As a result we could con-
clude that the evolutionary approach is viable for such tasks. The results indicated 
that the evolutionary algorithm was fast enough to provide results and turned out to 
be more flexible than the discrete dynamic programming method. The evolutionary 
approach provided results within a reasonable time limit and the cost/confidence 
optimization of 9 security activity areas took 0.4-0.45 seconds (Figure 7). The main 
advantage of the evolutionary algorithm was that it provided several adequate and 
equivalent security profiles for every cost level with a reasonable time (see Table 3). 
As it is noted, there should not be just one model to construct an effective security 
mechanism but several simple security mechanisms that are attuned to the needs 
of differing applications and organizations (Wulf & Jones, 2009). Thereby the evolu-
tionary approach might help us to provide a better confidence level.
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Table 4. The dependency matrix of 9 security measures
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