
145
Conference on Cyber Conflict
Proceedings 2010
C. Czosseck and K. Podins (Eds.)
CCD COE Publications, 2010, Tallinn, Estonia.

Permission to make digital or hard copies of all or parts of
this work for internal use within NATO and for personal or
educational use not done for profit or commercial purpose
is granted providing that copies bear this notice and a full
citation on the first page. Any other reproduction or trans-
mission requires prior written permission.

OPTIMIZING IT SECURITY COSTS BY
EVOLUTIONARY ALGORITHMS

Toomas Kirta,1, Jüri Kivimaab,2

a University of Tartu, Estonia, b CCD COE, Tallinn, Estonia

Abstract: One of the most critical issues in IT security is to establish a cost-
effective framework for cyber protection against possible threats. The overall
security framework is divided into security activity areas, which can have a
number of protection levels. Each level of one security activity area provides
certain confidence and also requires some expenditure. As the budget level is
predefined a critical question remains how to find out an adequate security
profile for a certain cost level. As the behavior of cyber attackers and cyber se-
curity threats are continuously changing, there should not be just one model
to construct an effective security mechanism but rather a variety of changing
alternatives. Several methods have been proposed for cost optimization but
they are limited by providing only one alternative. In this paper we propose
an evolutionary approach as an alternative for optimizing IT security costs
and for finding variants of security profiles for every cost level. Higher vari-
ability of security profiles will make the security organization more resistant
to changing cyber attacks.

Keywords: graded security model, information security metrics, information
security requirements, evolutionary computing, genetic algorithms

1 University of Tartu, Institute of Public Law, Teatri väljak 3, Tallinn, 10143, ESTONIA, Email: Toomas.
Kirt@ut.ee.

2 Cooperative Cyber Defence Centre of Excellence, Filtri Street 12, Tallinn, 10132, ESTONIA, Email: Jyri.
Kivimaa@ccdcoe.org

Toomas KIRT, Jüri KIVIMAA

146 Optimizing IT security costs by evolutionary algorithms

INTRODUCTION

We have the challenge of ensuring information security under conditions of uncer-
tainty: how can organizations determine appropriate measures to enhance cyber
security and allocate resources most efficiently? For finding out an optimal amount
of resources a security costs function is proposed, where the total cost of security
for a system is based on the cost of system security investments plus the cost of
damage and cost of recovery from any security incidents (Olovsson, 1992). Despite
the fact that the cost function also includes indirect costs in this study we take into
account only the direct costs of security investments. Usually, available resourc-
es are limited and therefore it is needed to optimize applied security measures to
achieve the highest attainable confidence level. The security framework is divided
into several security activity areas that can have a number of levels providing cer-
tain confidence. As the number of security activity areas increases the number of
different combinations of security measures or profiles grows exponentially. For
finding an optimal security profile several optimization methods are used, such as
a brute force optimizer and a discrete dynamic programming method (Kivimaa,
2009; Ojamaa, Tyugu, & Kivimaa, 2008).

It is argued that the dynamic programming may have some problems related to
independence of security activity areas and additivity and therefore the solutions
may not to be optimal (Kivimaa, 2009). This additivity restriction also limits the
search space and it is difficult to find out alternative security profiles that provide
the same level of confidence. Therefore our aim is to apply an additional method to
find out whether the solutions are adequate and also identify alternative security
profiles for a certain cost level. We decided to use an evolutionary algorithm as a
universal method for complex optimization in many fields. Genetic algorithms are
also actively used in IT security and intrusion detection systems (e.g. Li, 2004; Sin-
clair, Pierce, & Matzner, 1999).

Evolutionary algorithms are based on a Darwinian natural selection process and
form a class of population-based stochastic search algorithms (Dracopoulos, 2008;
Eiben & Smith, 2003; Holland, 1975). In the evolutionary process for all the individ-
uals representing candidate solutions some perturbations (e.g. crossover, mutations)
are applied to generate variation and thereafter a selection procedure, based on the
value of a fitness function, is enforced. The selection mechanism prefers individuals
that are the best candidates for the solution of the optimization problem. To main-
tain the variation in population in our experiments the population was divided into
subgroups and the selection process was performed within a group. This measure
helped to avoid the optimization process to fall into a local optimum and provided
better results. To solve the optimization task we have established an evolutionary
framework and applied it to the IT security cost/confidence data consisting of 9 se-

147Toomas KIRT, Jüri KIVIMAA

curity areas (CyberProtect, see Table 1). In the following optimization tasks we had
two goals: to minimize the costs and to maximize the integral security confidence.

This paper is divided into four main parts. In the first part the security model and
the data is described that we use in our optimization tasks. Next we introduce the
basis of evolutionary algorithm. Thereafter the results of optimization are given.
Finally the results are discussed and conclusions are made.

1. SECURITY MODEL
The main challenge in IT security is to ensure required information security under
conditions of uncertainty. To achieve the goal an organization has to define ad-
equate security levels and to determine appropriate measures for increasing cyber
security and allocating resources most efficiently. Usually certain risk assessment
methods are used for performing detailed risk analysis. For small and medium size
enterprises the detailed risk analysis is relatively expensive and also the available
resources for IT security are limited. Therefore a simpler version of the security
model is needed which provides possibility to achieve maximum possible confidence
with limited resources.

Table 1. IT security costs/confidence data. 9 security measures

Security measure \ level Level 0 Level 1 Level 2 Level 3

1. User Training Cost 0 4 8 12
Confidence 0 30 50 65

2. Redundant Systems Cost 0 8 10 12
Confidence 0 40 70 95

3. Access Control Cost 0 1 2 4
Confidence 0 40 70 95

4. Antivirus Cost 0 2 4 7
Confidence 0 60 80 95

5. Backup Cost 0 1 2 4
Confidence 0 40 70 95

6. Disconnection Cost 0 2 4 7
Confidence 0 40 60 75

7. Encryption Cost 0 2 4 7
Confidence 0 60 80 95

8. Firewall Cost 0 2 4 7
Confidence 0 30 50 65

9. Intrusion Detection Cost 0 1 2 4
Confidence 0 25 45 60

148 Optimizing IT security costs by evolutionary algorithms

In this research we rely on the graded security model, which is an improved and
combined version of two security methodologies: the US DoE graded security meth-
odology (best practice security methodology to specify needed security measures
for needed security levels; DOE, 1999) and Estonian governmental data classifica-
tion (metrics to specify needed security level; ISKE, 2009). “The system includes
knowledge modules (rule sets) in the form of decision tables for handling expert
knowledge of costs and confidence, as well as for selecting security measures for
each security group depending on the required security level.” [Kivimaa, et. al.,
2009] Basic ideas of graded security are presented as a decision table ‒ information
security activities areas/their realization levels and information security require-
ments/their levels in a dependency matrix. As an example a very simple (9 security
subareas) decision table/dependency matrix is given in the Appendix.

The example used in the experiments of this paper is an educational security frame-
work CyberProtect version 1.1 (CyberProtect, Table 1). It determines how hardware/
software/firmware can be secured based on nine security activity/measure groups
and their high/middle/low level realization of costs and confidence. The cost in this
example covers only the costs of security investments and is given in conventional
units. The confidence level is in the scale of 0…100 and the value is provided as an
expert opinion. Each security measure can have a certain level that determines re-
quired resources to achieve confidence. The baseline security methodologies define
conventional goals of security as confidentiality (C), integrity (I), availability (A), and
mission criticality (M). For each goal a finite number of security levels have been
determined. For example, four levels 0, 1, 2, 3 for representing required security
and protection can be used, where the lowest level 0 denotes unnecessary of special
protective measures. [Kivimaa, et. al., 2009]

We can formulate an optimization problem as follows: find the abstract security
profile with the best (highest) value of confidence for given amount of resources. As
we have a limited amount of available resources r our goal is to achieve a maximum
security level

�
�

�
n

i
iiqaS

1
maxmax

where qmax i is maximum security confidence of the i-th group of security activity
areas and ai is the weight of the i-th group

 �
�

�
n

i
ia

1

1

149Toomas KIRT, Jüri KIVIMAA

We have an optimization problem with two goals: to minimize resources on the
interval [rmin; rmax] and to maximize security, guaranteeing at least the levels pre-
scribed by a given security class. We are going to solve this problem by finding a
function that gives an abstract security profile that has maximum value of a secu-
rity confidence function given by the weighted mean security for any given value
of resources on the interval [rmin; rmax]. The task of the optimization application is
to find the best combination of security measure levels that provides the maximum
confidence at a cost level.

In previous experiments mainly two optimization algorithms were used to solve our
task ‒ one of them was a brute force optimizer and the other one was based on a
Pareto optimality (Pareto frontier or Pareto set) and discrete dynamic programming
method (Ojamaa, et al, 2009). This problem can be solved by means of building a
Pareto optimality trade-off curve that explicitly shows the relation between used
resources and security confidence. Then, knowing the available resources, one can
find the best possible security level that can be achieved with the resources and
specify the security measures to be taken.

For n security measures groups and k levels for information security requirements/
goals we have totally kn abstract security profiles to be considered. The number of
security measures groups may be in practice up to 30 or even more and in Estonian
data classification a 4-level version for security goals is used. This gives a number of
abstract security profiles: 430.

With the brute force method we must do rkn computations and with the dynamic
programming method r2kn (r is number of possible values of resources, k is the
number of security levels, n is number of security measures groups). For example,
if we have a 100 budget points curve for 25 security subareas then it takes ~10 sec-
onds to calculate it with the Pareto optimality & dynamic programming and by the
Brute Force method it would take ~10 years to calculate (Kivimaa, 2009).

To use Pareto optimality and dynamic programming in optimization security activi-
ties areas/security measures groups must be not dependent from each other’s and
their security measures to realize their levels must be additive. Independency in IT
security activities is quite problematic for some security areas, but in first approxi-
mation it is acceptable if we use certain specific logic of description (for example, the
IT security experts/specialists training costs are included into the costs of concrete
security activities areas/areas levels and some other analogical principles might be
followed).

The second weakness of dynamic programming is that it has some difficulties in
finding alternative security profiles for a certain optimal cost/confidence level. To
get over those weaknesses and to measure adequacy of the dynamic programming

150 Optimizing IT security costs by evolutionary algorithms

we decided to use an evolutionary algorithm as an alternative method. We expect
that the evolutionary approach is not stuck to such limitations and can provide re-
sults with a quite reasonable time.

2. EVOLUTIONARY ALGORITHMS
An evolutionary algorithm is a population-based stochastic search algorithm. The
basic principle is to iteratively generate random variation within individuals of pop-
ulation, that represents the candidate solution to the problem, and to select the
fittest candidates that provide the best solution to the task in hand. The view that
random variation provides the mechanism for discovering new solutions (Michale-
wicz & Fogel, 2004) was inspired by the process of natural evolution.

The idea of using Darwinian principles of evolution to solve some combinatorial
optimization problems arose with the invention of computers. Afterwards several
approaches were developed like evolutionary programming (Fogel, Owens, & Walsh,
1966) and genetic algorithms (Holland, 1975) in the early stage of the study of
evolutionary algorithms. Now there are a wide variety of approaches that can be
described as belonging to the field of evolutionary computing. The algorithms used
in the field are termed as evolutionary algorithms (Dracopoulos, 2008). The most
important characteristics of evolutionary algorithms are as follows:

• Representation. Each candidate solution to the problem in hand is represented
as an individual. The characteristics of the individual are encoded by genes.
The set of individuals form a population.

• Fitness. The quality of a candidate solution is measured by a fitness function.
The fitness function is used to measure how good an individual is. Fitter solu-
tions have a higher probability to survive and to contribute their characteris-
tics to offspring.

• Variation. Variation operators (e.g. crossover, mutations) are applied to the
individuals that modify the population of solutions dynamically.

• Selection. The average fitness is improved over time as a selection mechanism
is applied and the fittest individuals are selected for the next generation (sur-
vival of the fittest).

The basis of an evolutionary algorithm is simple. First, a population of initial can-
didate solutions has to be generated randomly. Thereafter iteratively a number of
variation generation operators are applied and new generations are selected based
on the fitness values of individuals.

151Toomas KIRT, Jüri KIVIMAA

2.1 ALGORITHM
There are several modifications proposed to the basic algorithm and we have adapt-
ed some aspects of cooperative co-evolutionary algorithms (see Machado, Tavares,
Pereira, & Costa, 2002; Potter & De Jong, 2000). In this approach the problem is
decomposed into subcomponents that represent potential components to the global
problem (see more details in Selection). As the problem in hand was not very com-
plex we decided to decompose a population P into S subpopulations Ps instead of
decomposing a problem. The aim was to maintain variety within the population as
a whole.

The algorithm can be defined then as follows:

 - for each subpopulation S do:

 - Initialize population Ps(0)

 - Evaluate all individuals from Ps(0)

 - While termination condition not met repeat:

 - For each subpopulation S do:

 - Apply crossover and mutation operators to individuals of Ps(t) and ob-
taining a set of offspring Os(t)

 - Evaluate individuals from Os(t)

 - Combine Ps(t) and Os(t) obtaining Ps(t+1)

During the evaluation the fitness value (average confidence level) of an individual is
found. The fittest from the ordered set of parents and offspring are selected for the
next generation.

2.2 REPRESENTATION
How to choose a suitable genetic representation of an individual is a key issue in evo-
lutionary computing. Each individual has two representations: phenotype (outside)
and genotype (inside). Object forming possible solutions within the original problem
context are referred as phenotypes, while their encoding, that is, the individuals
within the evolutionary algorithm, are called genotypes (Eiben & Smith 2003). Phe-
notypic characteristics of the candidate solution are encoded by individual’s geno-
type. The genes are the functional units to carry inherited information and they can
be arranged in chromosomes. In evolutionary algorithm a chromosome can be a
string of symbols or a vector of numerical variables (Gen & Lin, 2008). The complete
inherited information is called a genome.

152 Optimizing IT security costs by evolutionary algorithms

Genotype contains inherited information to build an individual in phenotype space.
In the natural systems the mapping from genotype to phenotype is not direct. In the
context of evolutionary algorithms three classes of possible mappings are defined:
direct, developmental and implicit (Floreano, Dürr, & Mattiussi, 2008). In a direct
representation, there is a one-to-one mapping between the parameter values of the
task in hand and the genes that compose the genetic string. In developmental rep-
resentations which are used mostly in case of large problems the specification of a
developmental process is genetically encoded which in turn constructs the desired
phenotype. In case of implicit encoding like in biological gene networks, the interac-
tion between the genes is not explicitly encoded in the genome, but follows implicitly
from the physical and chemical environment in which the genome is immersed.

In this paper direct mapping is used and each candidate solution is represented as
a chromosome consisting of the same amount of genes as the number of security
activity areas. Each gene denotes a security level of one security activity area. For
example, if there are 3 security levels plus one for the lowest level 0 denoting ab-
sence of special protective measures four possible values for one gene (0, 1, 2, 3)
can be defined. If there are 9 security activity areas then a chromosome can be G =
{1 0 3 2 3 1 2 1 3}.

2.3 FITNESS
The goal of the evolutionary search is defined as a user-specified measure of the
quality or the fitness of the individuals. The algorithm is expected to find in the
search space an individual with maximum quality or fitness. In our experiments the
fitness is measured as a weighted average of confidence levels of security activity
areas.

2.4 VARIATION
The initial population is usually generated randomly and therefore it is highly vari-
able. The movement in the search space is based on random changes in chromo-
somes generated by reproduction and applying several variation operators. The re-
production is carried out with some stochastic mutation and recombination of the
parents in order to explore new regions the search space and combine the informa-
tion carried by each parent (Gen & Lin, 2008).

The main operator to generate variation in population is the crossover. There are
introduced several approaches to select parents and to recombine their genetic in-
formation. Recombination, the process whereby a new individual is created from
the information contained within two parents, is considered to be one of the most

153Toomas KIRT, Jüri KIVIMAA

important features in evolutionary algorithms. In the experiments we use the cross-
over operator called n-point crossover, where the value of n is 2. The basic steps of
applying a crossover operator are as follows: first, to select two parents based on
some restrictions (if there are any) and next, select segments of genes from both
parents to form the genes of an offspring. The second parent is selected randomly
from the whole population. An example is illustrated in Figure 1. A segment {4, 3} is
taken from one parent and is transferred to the other parent’s genetic code.

Figure 1. n-point crossover. n = 2.

Several variation operators are used to make variation in population and to move in
the search space.

Random mutation is the change of the value of one gene. For example, the value of
the first gene {1} is replaced by the new value {3}.

Figure 2. Random mutation of a single gene

Swap operator: selects two genes and swaps them. For example, genes {5} and {3} are
selected and swapped.

Figure 3. Swap mutation

Inversion operator: selects a segment of genetic code and reverses order of the genes
belonging to it. For example, genes {1 5} are reversed {5 1}.

Figure 4. Inversion mutation

Insertion operator: selects a gene and inserts it in another place. For example, gene
{1} is moved to the end of the genetic code.

154 Optimizing IT security costs by evolutionary algorithms

Figure 5. Insertion mutation

Displacement operator: selects a segment of genetic code and inserts it in another
place. For example, genes {1 5} are moved to the end of the genetic code.

Figure 6. Displacement mutation

When mutation operators are applied, the genes are validated whether they are in
accordance to the restrictions of the task in hand. When the code does not meet the
restrictions it is not used in the further processing.

2.5 SELECTION
The selection is a process to select survivals for the next generation. During each
generation, the chromosomes are evaluated, using some measures of fitness. A new
generation is formed by selecting some parents and offspring, according to their fit-
ness values, and rejecting others to keep the population size constant.

Figure 7. An example of a tournament selection of 2 sub-population consisting of 2 indi-
viduals. 4 candidates (2 parents P and 2 offspring O) are competing for selection
for next generation within a sub-population

a) After reproduction and mutation a new sets of individuals (offspring) are formed
in each subpopulation

155Toomas KIRT, Jüri KIVIMAA

Figure 8. Selection and regrouping of the initial population.

b) For selection the parents and offspring within a sub-group are ordered based on
the fitness value and the fittest are selected for the next generation

In this study the selection method is based on the tournament selection strategy,
which is deterministic. The tournament selection is effective, because it does not
require any global knowledge of the population and it also avoids falling into a local
optimum by maintaining variety in the population. This strategy also enhances the
search space and allows exploring it in parallel. To perform tournament selection
we have to define the tournament size k. The members of a tournament are usu-
ally selected randomly, but we use a deterministic strategy where the competing
sub-populations are predefined. For example, the tournament or subpopulation size
is defined as 2. After reproduction and mutation phase (Figure 7) 4 candidates (2
parents and 2 offspring) compete for being selected for the next generation (Figure
8). The selection is performed locally and therefore the winning members of one
tournament may have a weaker fit value than the least-fit members of the other
tournament. Further mutations in such a weak subpopulation may reveal some
properties of an individual that are needed to reach the global optimum and are not
represented in other subgroups.

3. EXPERIMENTS
For experiments we had the IT security cost/confidence data consisting of 9 secu-
rity activity areas (CyberProtect; see Table 1). The aim of the optimization was to
find the highest average confidence level for a given amount of resources. The op-
timization task is formed as a question (Kivimaa, 2009): “For every possible budget
level, what is the maximum confidence one can expect?” In the optimization tasks
the amount of resources (budget) was predefined form 1 to max+1. The max value
equals the costs of the security measures of the highest level.

156 Optimizing IT security costs by evolutionary algorithms

Figure 9. Mean computational time to find optimal confidence value for 9 security areas
(mean value of 5 experiments)

The first task was to measure the mean computational time to solve the optimiza-
tion problem. The second task was to find the cost/confidence optimality curve. The
third task was to find out the cost/confidence optimality curve when the optimality
was restricted by a security class. The fourth task was to identify adequate and
equivalent security profiles for every cost level.

For the results presented in this section we used the following experimental set-
tings: crossover rate 0.49, mutation rate 0.2, swap rate 0.1, inversion rate 0.1, inser-
tion rate 0.1, and displacement rate 0.1. The number of generations was set as 30
and population size 80, and the tournament or subpopulation size was 5. The cost
of the highest security level (C3I3A3M3) was 64 units and the optimization was
performed for the cost levels from 1 to 65 units. With each cost level 5 experiments
were performed. The rates for crossover and mutation operators were selected as
the best practice of solving other optimization problems. Despite the optimization
tasks are similar the rates might not be the best for solving the security optimiza-
tion task. Additional computation time is required if either the variation rate is very
low or high, as unnecessary calculations are needed to be performed.

As a result the average time for optimization was between 0.4 and 0.45 seconds (Fig-
ure 9). The task two was to find the cost/confidence optimality curve (yellow dots in
Figure 10). For interpretation a color coding of dots in the curve is used as follows:
red dots ‒ all security activities area’s security levels are � and at least one is < than
required; green dots ‒ all security goals/their required levels are exactly achieved;

157Toomas KIRT, Jüri KIVIMAA

yellow dots ‒ at least one security level is less and at least one security level is more
than required; blue dots ‒ all security levels are � and at least one security level is
> than required. The curve represents the optimal value of weighted mean security
confidence depending on the resources that are used.

Table 2. The experimental dependency matr ix of 9 security measures

Security measure C0 C1 C2 C3 I0 I1 I2 I3 A0 A1 A2 A3 M0 M1 M2 M3

1. User Training 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
2. Redundant Systems 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
3. Access Control 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
4. Antivirus 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3
5. Backup 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 3
6. Disconnection 1 1 2 3 1 1 2 3 1 1 2 3 1 2 3 3
7. Encryption 0 0 1 3 0 1 2 3 0 0 0 0 0 0 2 3
8. Firewall 0 1 2 3 0 1 2 3 0 1 2 3 0 2 3 3
9. Intrusion Detection 0 1 2 3 0 1 2 3 0 1 2 3 0 2 2 3

Next experiments were performed when the limitation of security class was applied.
In this study an experimental dependency matrix of connections between security
measures and conventional goals of security was used (Table 2). For example, as the
security class is defined C1I1A1M1 then the highest level of a security measure is
selected and the security configuration is (1, 1, 1, 1, 1, 2, 1, 2, 2). The comparison of
confidence values between the security classes C3I3A3M3 and C1I1A1M1 is given
in Figure 10. As there are more available resources than are needed to satisfy the
restrictions caused by a security class the security measures cannot be weaker than
determined by the security class.

Figure 10. Costs/confidence optimality curve using security-class limitation. Security class
C3I3A3M3 versus C1I1A1M1. Optimal security configuration (1, 1, 1, 1, 1, 2, 1, 2,
2)

158 Optimizing IT security costs by evolutionary algorithms

The final task was to obtain different security profiles. To find out different security
profiles we ran experiments 35 times for every cost level. An extract of the results is
given in Table 3. For example, when 34 unit of money was available (budget restric-
tion) then 5 equivalent security profiles were found.

Table 3. Equivalent security profiles for every cost/confidence level in case of 9 security
measures. An excerpt

Security measure

No. Money Costs Confidence 1 2 3 4 5 6 7 8 9
…
88 34 34 62,22 1 4 4 2 4 2 3 3 3
89 34 34 62,22 1 4 4 3 4 2 2 3 3
90 34 34 62,22 1 4 4 3 4 3 2 2 3
91 34 34 62,22 1 4 4 2 4 3 3 2 3
92 34 34 62,22 1 4 4 2 4 3 2 3 3
93 35 35 62,78 2 1 4 3 4 4 3 3 4
94 35 35 62,78 2 1 4 3 4 3 4 3 4
95 35 35 62,78 2 1 4 3 4 3 3 4 4
96 35 35 62,78 2 1 4 4 4 3 3 3 4
97 36 36 64,44 1 4 4 3 4 3 3 2 3
98 36 36 64,44 1 4 4 2 4 3 3 3 3
99 36 36 64,44 1 4 4 3 4 2 3 3 3
100 36 36 64,44 1 4 4 3 4 3 2 3 3
…

4. CONCLUSIONS
The aim of the study was to evaluate whether the evolutionary approach is applica-
ble to the security of the cost/confidence optimization task and whether it allows us
to generate equivalent security profiles for every cost level. As a result we could con-
clude that the evolutionary approach is viable for such tasks. The results indicated
that the evolutionary algorithm was fast enough to provide results and turned out to
be more flexible than the discrete dynamic programming method. The evolutionary
approach provided results within a reasonable time limit and the cost/confidence
optimization of 9 security activity areas took 0.4-0.45 seconds (Figure 7). The main
advantage of the evolutionary algorithm was that it provided several adequate and
equivalent security profiles for every cost level with a reasonable time (see Table 3).
As it is noted, there should not be just one model to construct an effective security
mechanism but several simple security mechanisms that are attuned to the needs
of differing applications and organizations (Wulf & Jones, 2009). Thereby the evolu-
tionary approach might help us to provide a better confidence level.

159Toomas KIRT, Jüri KIVIMAA

REFERENCES
 - CyberProtect, version 1.1. U. S. Department of Defense, Defense Information Systems Agency.

Available at: from http://iase.disa.mil/eta/. [Accessed 1st February 2010]

 - Department of Energy, 1999. Classified Information Systems Security Manual. Available at: https://
www.directives.doe.gov/directives/archive-directives/471.2-DManual-2/at_download/file. [Accessed
1st February, 2010]

 - Dracopoulos, D. C., 2008. Evolutionary Learning. In B. Wah (Ed.), Wiley Encyclopedia of Computer
Science and Engineering. New York: John Wiley & Sons.

 - Eiben, A. E., & Smith, J. E., 2003. Introduction to Evolutionary Computing. Berlin: Springer.

 - Floreano, D., Dürr, P., & Mattiussi, C., 2008. Neuroevolution: From architectures to learning.
Evolutionary Intelligence, 1(1), 47‒62.

 - Fogel, L. J., Owens, A. J., & Walsh, M. J., 1966. Artificial Intelligence Through Simulated Evolution, John
Wiley & Sons: New York.

 - Gen, M., & Lin, L., 2008. Genetic Algorithms. In B. Wah (Ed.), Wiley Encyclopedia of Computer Science
and Engineering. New York: John Wiley & Sons.

 - Holland, J. H., 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. Cambridge, MA: MIT Press.

 - ISKE, 2009. ISKE - three-level IT baseline protection system (Version 5.00). Retrieved February 1,
2010, Available at: http://www.ria.ee/public/ISKE/iske_rakendusjuhend_5_00.pdf. [Accessed 1st
March, 2010]

 - Kivimaa, J., 2009. Applying a costs optimizing model for IT security. In H. Santos (Ed.), Proceedings
of the 8th European Conference on Information Warfare and Security (pp. 142‒153). Reading, UK:
Academic Publishing Limited.

 - Kivimaa, J., Ojamaa, A., Tyugu, E., 2009. Graded Security Expert System, Critical Information
Infrastructure protection, Berlin: Springer.

 - Li, W., 2004. Using Genetic Algorithm for network intrusion detection. In Proceedings of United States
Department of Energy Cyber Security Group 2004 Training Conference (pp. 1-8). Kansas City, Kansas.

 - Machado, P., Tavares, J., Pereira, F. B., & Costa, E., 2002. Vehicle Routing Problem: Doing it the
Evolutionary Way, In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2002) (p. 690). New York, USA.

 - Michalewicz, Z., & Fogel, D. B., 2004. How To Solve It: Modern Heuristics. Berlin: Springer.

 - Ojamaa, A., Tyugu, E., & Kivimaa, J., 2008. Pareto-optimal situation analysis for selection of security
measures. In Military Communications Conference: Unclassified Proceedings (pp. 3224‒3230).
Piscataway, NJ: IEEE.

 - Olovsson, T., 1992. A Structured Approach to Computer Security. In: Technical Report No. 122.
Göteborg, Sweden: Chalmers University of Technology.

 - Potter, M. A., & De Jong, K., 2000. Cooperative Coevolution: An Architecture for Evolving Coadapted
Subcomponents. Evolutionary Computation, 8(1), 1‒29.

 - Sinclair, C., Pierce, L., & Matzner, S., 1999. An application of machine learning to network intrusion
detection. In Proceedings of the 15th Annual Computer Security Applications Conference (pp. 371-
377). Phoenix, AZ.

 - Wulf, W. A., & Jones, A. K., 2009. Reflections on Cybersecurity. Science, 326, 943‒944.

160 Optimizing IT security costs by evolutionary algorithms

APPENDIX

Table 4. The dependency matrix of 9 security measures

No

In
fo

rm
at

io
n

Se
cu

ri
ty

G

oa
ls

In
fo

rm
at

io
n

Se
cu

ri
ty

ac
tiv

iti
es

 a
re

as

C
on

fid
en

tia
lit

y
R

eq
ui

re
m

en
ts

In
te

gr
ity

 R
eq

ui
re

m
en

ts
A

va
ila

bi
lit

y
R

eq
ui

re
m

en
ts

M
is

si
on

 C
rit

ic
al

ity

C
0

C
1

C
2

C
3

I0
I1

I2
I3

A
0

A
1

A
2

A
3

R
0

R
1

R
2

R
3

Public Data

Data for
Internal Use

Confidential Data

Highly Confidential
Data

Protection/Detection
of Changes is

Not Important

Protection/Detection of
Unauthorized Changes

Inputter/Changer must
be detectable

Inputter/Changer Must
be Provable

(in court)

Delay of Data Will Not
Cause Problems

Availability 90% -
allowed ~ one day

delay in week

Availability 99% -
allowed ~ one hour

delay in week
Availability 99,9% -

allowed one ~10 minuts
delay in week

Data Delay Will Not
Cause Significant

Consequences

Data Delay Causes
Damages in Hundreds of
Thousands

Data Delay Causes
Damages in Millions o

Kroons

Data Delay Causes
Hundreds of Millions o

Damages

1.
A

cc
es

s C
on

tr
ol

A
C

-0
A

C
-1

A
C

-2
A

C
-3

A
C

-0
A

C
-1

A
C

-2
A

C
-3

A
C

-4

2.
U

se
r

T
ra

in
in

g

U
T

-1
U

T
-2

U
T

-3

3.
D

is
co

nn
ec

tio
n

(D
at

a
C

om
m

un
ic

at
io

ns
)

D
C

-1
D

C
-2

D
C

-3
D

C
-1

D
C

-2
D

C
-3

D
C

-4

4.
E

nc
ry

pt
io

n
C

R
-1

C
R

-2
C

R
-3

C
R

-1
C

R
-2

C
R

-3

5.
In

tr
us

io
n

D
et

ec
tio

n
(M

on
ito

ri
ng

)
ID

-0
ID

-1
ID

-2
ID

-3

6.
Fi

re
W

al
l (

Pe
ri

m
et

er
 P

ro
te

ct
io

n)
FW

-0
FW

-1
FW

-2
FW

-3
FW

-0
FW

-1
FW

-2
FW

-3

7.
A

nt
iv

ir
us

A
V

-1
A

V
-2

A
V

-3
A

V
-1

A
V

-2
A

V
-3

8.
B

ac
ku

p
an

d
R

ec
ov

er
y

B

R
-1

B
R

-2
B

R
-3

B
R

-1
B

R
-2

B
R

-3
B

R
-4

9.
R

ed
un

da
nc

y
(I

T
 R

ec
ov

er
y)

R
-1

R
-2

R
-3

R
-4

