
59
Conference on Cyber Conflict
Proceedings 2010
C. Czosseck and K. Podins (Eds.)
CCD COE Publications, 2010, Tallinn, Estonia.

Permission to make digital or hard copies of all or parts of
this work for internal use within NATO and for personal or
educational use not done for profit or commercial purpose
is granted providing that copies bear this notice and a full
citation on the first page. Any other reproduction or trans-
mission requires prior written permission.

Jaak TEPANDI, Gunnar PIHO, Innar LIIV

DOMAIN ENGINEERING FOR CYBER
DEFENSE: A CASE STUDY AND

IMPLICATIONS

Jaak TEPANDIa, Gunnar PIHOa,b, Innar LIIVa

aTallinn University of Technology, Estonia, bUniversity of Leeds, UK

Abstract: Efficient processing of large amounts of data gathered about real-
world objects, activities, attacks, and other relevant entities is vital for suc-
cessful cyber defense. The value of data processing depends critically on the
quality of utilized data models. To be more practical, data models should be
integrated and reused. Domain engineering addresses the challenges of mod-
el quality, integration and reuse. This paper analyses the possibilities of using
domain engineering for cyber defense, exemplified and motivated by a case
study of predicting the results of terrorist behavior. The presented case study
demonstrates the need for adequate domain engineering for simulation and
cyber defense tasks. An approach to modeling and integrating cyber defense
and simulation data with archetype-based domain engineering is presented.

Keywords: cyber defense, simulation, domain engineering, modeling of ter-
rorist behavior, archetype-based engineering

60 Domain Engineering for Cyber Defense: a Case Study and Implications

INTRODUCTION

The early motivation for this research emerged after the 1995 Oklahoma City bomb-
ing that killed 168 people. The components of the truck bomb used in this event
were easily accessible to an ordinary person: ammonium nitrate, an agricultural
fertilizer, and nitromethane, a motor-racing fuel. In the same way, information about
usage of these and other components for preparing explosives was also easily avail-
able. The more technology develops and information spreads, the more one can ex-
pect such incidents to occur ‒ a fact that certainly worries many people. In the study
(Tepandi 2002, Tepandi&Vassiljev 2008) we modeled, simulated, and investigated a
terrorism spreading problem closely related to similar issues in cyber defense.

While working on this study it soon became evident that the value of simulation
results critically depends on the correctness of the world model used in simulation.
Adequate methods for data representation ‒ and more generally, for domain engi-
neering ‒ are also important for effective cyber defense (Presidency of the Council
of the European Union (PCEU) 2009, Department of Homeland Security(DHS) 2009,
Thomas&Cook 2005).

Powerful methods for domain modeling have been developed by the software en-
gineering community (Sommerville 2006, Bjorner 2006). In the next section we
outline the relationships between cyber defense and domain engineering. The sec-
ond section presents a summary of the case study aimed at modeling and simula-
tion of a terrorism spreading problem. The third section is devoted to principles
of archetype-based engineering of domains, requirements, and software for cyber
defense (Arlow&Neustadt 2003, Piho, et al., 2009). The final section presents some
open challenges and directions for further work.

1. CYBER DEFENSE AND DOMAIN
ENGINEERING

An important aspect of cyber defense is processing of large amounts of data gath-
ered about real-world objects, activities, attacks, and other relevant entities (DHS
2009). Such data processing may give answers to specific information requests,
enable mining of significant clues that help to prevent or counter cyber attacks,
or provide cost-effective simulation solutions to critical information infrastructure
protection (CIIP) exercises (PCEU 2009).

Efficient data processing depends critically on data representations (Thomas&Cook,
et al., 2005). If the data entities are fragmented and difficult to relate to each other,
then solving each new problem begins from scratch and significant data relation-

61Jaak TEPANDI, Gunnar PIHO, Innar LIIV

ships may be lost. In contrast, in case of integrated data representations, various ob-
jects may be associated with each other and hidden relationships may be discovered
more easily. In addition, new problems may be defined and solved based on already
existing world models. In (Thomas&Cook 2005, p. 133), one of the actions recom-
mended for advancing the community’s capabilities for data representation and
transformation is to “create methods to synthesize information of different types
and from different sources into a unified data representation so that analysts, first
responders, and border personnel may focus on the meaning of the data”.

Traditionally, mathematical and statistical representations are widely used to pres-
ent analytical data. These representations enable efficient transformation of data to
be utilized in analysis and simulation tasks. As the area to be represented widens,
mathematical and statistical models tend to be less comprehensible. Therefore it is
useful to utilize domain modeling experience gained in software engineering.

A proper domain model is essential for a successful realization of an information
system; therefore, various representation tools and methods have been developed
by the software engineering community. Requirements specified for information
systems must be well agreed with the customer. Hence, significant emphasis has
been put by software engineers on understandability of system models by both the
developer and the customer (e.g. (Sommerville 2006, Bjorner 2006)).

As in cyber defense, different systems may reflect diverse aspects of the same do-
main. Therefore, it is important to have integrated domain models. In addition, the
reality changes and the systems must reflect this change. Domain engineering ad-
dresses the challenges of both model integration and reuse (Bjorner 2006). It at-
tempts to build reusable models for application domains ‒ knowledge areas that
cover important fields of reality and share common concepts. An application domain
model may represent terrorism simulation, cyber defense, CIIP, medical laboratory,
or other areas.

Critical IT infrastructure protection is an example of an application domain which
may benefit from domain engineering. Critical IT infrastructure is important in it-
self, providing critical services (e.g. communications and access to vital registers).
It is also vital as a supporting framework without which other critical services (e.g.
banks, health services) would be impossible. Any significant future cyber conflict
will most probably comprise attacks on the critical IT infrastructure. Critical infor-
mation infrastructure protection (CIIP) needs to be supported by regular exercises
(Enisa 2009). CIIP exercises may be expensive and sometimes impossible to per-
form full-scale. Simulation is a viable alternative. It cannot provide full participation
experience, but enables evaluating influence, resources, consequences, and so on.
Usefulness of simulation depends on the quality of data representations used and
consequently ‒ on the quality of domain modeling.

62 Domain Engineering for Cyber Defense: a Case Study and Implications

2. A CASE STUDY: AGENT-ORIENTED
MODELING OF TERRORIST BEHAVIOR
DYNAMICS

The application domain of the case study (Tepandi 2002, Tepandi&Vassiljev 2008)
is spreading of terrorist acts. The objective of this study is to comprehend the dy-
namics of terrorism spreading as a function of certain world properties, such as
access to information, availability of material resources, and others. The analysis
is based on the indication that the probability, power, and influence of terrorist at-
tacks ‒ both in physical and cyber reality ‒ are increasing with growing access to
information and material resources.

2.1 MAIN HIGHLIGHTS OF THE STUDY
We begin with analyzing two extreme cases. On one extreme, when the resources,
both the information and materials, are on a low level, one cannot do much harm.
For example, prior the twentieth century it was practically impossible to affect the
living conditions on Earth significantly by even a large number of people. In this
case the probability that the population will be terminated as a result of cumulative
effect of terrorist attacks may be evaluated to zero. The situation has been changed,
but powerful resources have still usually been out of reach of an ordinary person.
Little by little, this encouraging situation is also changing. Like in Oklahoma and
subsequent events, ordinary people have more and more information and resources
available for terrorism.

The other extreme is a hypothetical situation of extremely large resources being
available to everyone. It seems clear that in such a case the world would not last
long. There will inevitably be people who are stressed enough, or who believe that
passing away is the best option for everyone. The probability that the population
will cease to exist due to the cumulative effect of terrorist attacks may be evaluated
to one. This extreme situation is unlikely, for the governments recognize the danger
and are building barriers to available resources. Still it seems inevitable that the
power in the hands of individuals is growing, and the governments are taking more
measures to prevent that power from growing too high.

The study addresses the question whether the transition between the above two
extremes is evolutionary (for example linear) or stepwise (for example exponential).
An evolutionary transition would allow taking measures when the situation indi-
cates that the level of resources is too high and it is time to take a more restrictive
approach. In the case of a stepwise transition there might be no way back after a

63Jaak TEPANDI, Gunnar PIHO, Innar LIIV

certain level of resources has been exceeded.

The study involved designing the domain model for terrorist behavior, development
of the simulation environment, performing simulation experiments, and drawing
conclusions.

2.2 THE DOMAIN MODEL FOR TERRORIST
BEHAVIOR

The domain model for terrorist behavior is based on a world of agents. The world has
certain properties and so do the agents. The world evolves in a discrete time, where
each unit represents a world cycle. The initial properties of the agent are determined
by the world properties. The properties of each agent at the next moment are deter-
mined by the agent’s individual properties, the world properties and the values of its
neighbor agents at the current moment.

The world is determined by its shape and size, overall access to information and
access to resources values, the level of interaction between the agents (“sociality”),
initial distributions of information, resources, violence, and charity, as well as the
rules for activating violence or charity acts and for changing the agent values. Ex-
ample: a condition that in a specific world W, the overall value of the AccessToInfor-
mation property is in the range of 0 to 1, may be expressed by 0 � WorldValue(W,
AccessToInformation) � 1.

Some properties of the world determine characteristics of the simulation, for ex-
ample the rules which determine whether the world is considered to be evolving,
stable, or extinct for the purpose of analysis.

The agent properties include the amount of information and resources, as well as
the levels of violence and charity. Example: a condition that for a specific agent A in
the world W, the value of the AggressivenessLevel property is in the range of 0 to 1,
may be expressed by 0 � AgentValue(W, a, AggressivenessLevel) � 1.

In each world cycle, the agents go through various interactions. The agents are born
and die; they acquire new and lose existing information and resources according
to certain laws. The agents also perform violence or charity acts according to their
property values. The nature, probability, and influence of the act depend on the
agent mood, its access to resources and information, and other factors. Each violent
act enlarges the aggressiveness of the neighbors and may kill other agents; each
charity act enlarges the charity of the neighbors and may bring new agents into
being.

64 Domain Engineering for Cyber Defense: a Case Study and Implications

An example of an agent’s interaction: an object A performs a terrorist act with prob-
ability proportional to the overall violence level and its own knowledge, resources,
and aggressiveness levels. As the result of the act, the neighbors of A will be re-
moved with probability adversely proportional to the distance from A (nearer neigh-
bors suffer to a greater extent). The Aggressiveness property of the neighbors will
increase in adverse proportion with the distance from A (nearer neighbors are more
influenced)

Given a world with its agents, properties, and interactions, this world may be started,
letting the agents act and interact. This process may exist in a long-term or infinite
continuous interaction. It may also end in termination of the population (most or all
agents are destroyed as a result of terrorist attacks) or in stable non-interacting situ-
ation. The first situation occurs most probably when the opposite properties, such
as violence and charity are balanced, the other two ‒ when they are out of balance.

2.3 THE SIMULATION ENVIRONMENT
The simulation environment developed for the study provides a simulation model
description language (SMDL), tools for executing the model defined in SMDL, fa-
cilities for visualizing the results of the simulation, as well as tools for saving and
analyzing the results of the simulation.

The SDML defines the simulation general properties, the world general properties,
the initial distribution intervals for the agent property values (Aggressiveness, Vi-
olence, Knowledge, Charity, and Resources), the rules determining change of the
agent property values in each cycle, and agent properties. Example: an assertion “ag-
gressiveness_for_act=80” specifies that if an agent’s aggressiveness value is higher
than 80 (on a scale 0...100) it will consider a terrorist act.

The properties defined in SDML allow a wide variety of specific populations to be
simulated using the tools for executing the SDML model.

Facilities for visualizing the results of the simulation include the main window and
auxiliary windows. The agents are represented as squares of different colors. The
black color of a square depicts a dead agent. The other colors indicate the state of
aggressiveness of an agent, varying from light green (zero aggressiveness level) to
yellow (average aggressiveness) to red (very aggressive). The auxiliary windows pro-
vide graphs for average aggressiveness of the population and the number of agents
alive with respect to the number of turns passed.

65Jaak TEPANDI, Gunnar PIHO, Innar LIIV

2.4 EXPERIMENTS AND CONCLUSIONS
At the start of a simulation run the world and the agents are specified in the SMDL.
The rules for changing the world and agent properties during each world cycle are
also given in SMDL. At the end of each cycle, a check is performed for the end of
the simulation. The simulation run is finished and the final results are output in
the following cases: the population has survived; the population has stabilized; the
population has terminated.

Experiments have been performed using agent models of different complexity. In a
typical experiment, the world properties, such as access to information, varied from
minimum to maximum. For each intermediate value, a series of simulation runs
were performed to evaluate the probability of population termination due to the cu-
mulative influence of terrorist acts. The resulting graphs of the relationship between
the world properties and the termination probability were analyzed.

The results of a typical experiment portraying the relationship between the prob-
ability of population survival and access to information for different levels of access
to material resources demonstrate that the relationship tends not to be linear. Rath-
er, the graphs represent a stepwise or constant relationship. Therefore the model
does not necessarily lead to destabilization of the population with the growth of
access to information. But in the case it does, the resulting dependency is rather
step-wise than smooth. These experiments allow concluding that this property may
be not an incidence, but regular behavior.

Thus the findings indicate that the results of terrorism activities can start spread-
ing very quickly with the growing amount of information and material resources in
individuals’ hands, allowing no point of return. These results should be taken into
account when designing political, social and technical systems to prevent terrorism.

The case study used both simulation and visualization for delivery of results. Simu-
lation helps to have deeper insight into the cyber defense problems and explore
risks of critical infrastructure protection situations that typically have previously
not been experienced in reality. For example, as the cyber defense systems must
predict behaviors and situations unspecified beforehand, simulation helps to cost-
effectively predict the need for resources for these systems. Visual analytics tools
and techniques help to better synthesize information, derive insight, discover the
unexpected, and communicate assessment effectively for action (DHS 2009).

This case study has also demonstrated that trustworthy world models comprising
terrorist activities are vital for these kinds of experiments, are complex, and require
much development effort. The simulation environment must utilize multiple models
for diverse tasks and experiments.

66 Domain Engineering for Cyber Defense: a Case Study and Implications

3. TOWARDS ARCHETYPE-BASED
DOMAIN MODEL OF CYBER DEFENSE

The SMDL introduced in this case study is based on mathematical notations (sets,
relationships, formulas) and a language for presenting the world life cycle. The prac-
ticality, integrity, and other properties of this kind of models are not easy to compre-
hend and analyze. To make building and analysis of domain models more feasible
we propose principles of archetype-based development (ABD) (Piho, et al., 2009) for
cyber defense. We use ABD at Clinical and Biomedical Proteomics Group (Univer-
sity of Leeds, UK) for developing software factory (Greenfield 2004) for laboratory
information management system (ASTM 2006) software. In ABD we combine trip-
tych software development (from domain via requirements to dependable software)
(Bjorner 2006) with archetype and archetype patterns initiative (Arlow&Neustadt
2003).

An archetype is defined as a primordial thing that occurs consistently and uni-
versally in various domains (business, manufacturing, transportation, defense, etc.)
and in systems supporting such domains. Examples of archetypes are product, fea-
ture, money, address, person, organization and so on. An archetype pattern is a
collaboration of archetypes. Arlow and Neustadt have the following archetype pat-
terns: party and party relationship, product, order, inventory, quantity and money,
and rule. In the following we exemplify how to build archetype and archetype pat-
terns based domain models for defense. These models are utilized by simulation
and visualization environments to further explore critical situations and problems,
as well as to obtain a deep insight that directly supports assessment, planning, and
decision-making in this domain.

3.1 ZACHMAN FRAMEWORK AND ABD
Components of the ABD are represented within the Zachman Framework (ZF) (Zach-
man 1987, Zachman 2003a, Zachman 2003b). The ZF (Fig. 1) is a framework for
enterprise architecture, which provides a formal and structured way for describing
an enterprise. It is presented as a two dimensional matrix consisting of 6 rows and
6 columns. Each column of the ZF describes single, independent phenomena within
the analytical target (Zachman 2003b). The rows present conceptual model, busi-
ness model, system model, technology model, detailed representations, as well as
functioning enterprise aspects of the domain. In what follows we characterize the
contents of the columns in ZF with examples.

Column 1 (What) describes what the things are, what the features of those things
are and how these things are related to each other. In ABD we use both product and

67Jaak TEPANDI, Gunnar PIHO, Innar LIIV

S
co

p
e

C
on

ce
pt

u
al

 m
od

el

P
la

n
n

er

Sk
et

ch
es

B
u

si
n

es
s

M
od

el

C
on

ce
pt

u
al

 M
od

el

O
w

n
er

D
ra

w
in

gs

S
ys

te
m

 M
od

el

L
og

ic
al

 M
od

el

D
es

ig
n

er

A
rc

hi
te

ct
 P

la
n

s

T
ec

h
n

ol
og

y
M

od
el

P
h

ys
ic

al
 M

od
el

B
u

ild
er

C
on

tr
ac

to
r

P
la

n
s

D
et

ai
le

d
 R

ep
re

se
n

ta
ti

on

O
u

t-
O

f-
C

on
te

xt

S
u

b
-C

on
tr

ac
to

r

S
u

b
co

n
tr

ac
to

r
P

la
n

s

F
un

ct
io

n
in

g
E

nt
er

pr
is

e

P
ro

d
u

ct

U
se

r

M
ot

iv
at

io
n

S
tr

at
eg

y

W
h

y

General Model of Business Rules
D

at
a

T
h

in
gs

W
h

at

F
u

n
ct

io
n

P
ro

ce
ss

H
ow

N
et

w
or

k

L
oc

at
io

n
s

W
he

re

P
eo

p
le

P
eo

p
le

W
h

o

T
im

e

E
ve

n
ts

W
he

n

"
is

 le
ve

l o
f

ag
gr

es
si

ve
ne

ss

h
ig

h
"

, "
is

p

op
u

la
ti

on

te
rm

in
at

ed
"

,..
.

R
es

ou
rc

e,
 L

ev
el

of

 R
es

ou
rc

es
,

L
ev

el
 o

f
K

no
w

le
dg

e,

K
no

w
le

dg
e,

 ..
.

B
ir

th
 o

f
A

ge
nt

,
D

ea
th

 o
f

A
ge

n
t,

L

ea
rn

in
g,

F

or
ge

tt
in

g,

E
ar

ni
ng

, .
..

St
ru

ct
ur

e
of

E

nv
ir

on
m

en
t

(O
rg

an
iz

at
io

n
 o

r
R

eg
io

n
 f

or

E
xa

m
p

le
)

T
er

ro
ri

st
,

In
fo

rm
er

,
A

ge
nc

y,
...

R
ep

or
ts

 A
b

ou
t

T
er

ro
ri

st

B
eh

av
io

u
r

General Model of Products

General Model of Business Processes

General Model of Environment and Environment Units

General Model of Stakeholders and Their Roles

General Model of Business Events

D
ef

in
it

io
n

s
of

P

ro
ce

ss
es

D
ef

in
it

io
n

s
of

P

ro
ce

ss
es

 in

te
rm

s
of

 P
ar

ty

R
el

at
io

n
sh

ip

(F
ee

db
ac

k)

D
ef

in
it

io
n

 o
f

P
ar

ty

R
el

at
io

n
sh

ip

A
rc

he
ty

p
e

P
at

te
rn

P
ar

ty

R
el

at
io

n
sh

ip

F
ra

m
ew

or
ks

,
D

L
L

-s
, A

P
I-

s
an

d
 D

B
 T

ab
le

s

S
of

tw
ar

e
an

d

Se
rv

ic
es

 U
si

ng

P
ar

ty

R
el

at
io

n
sh

ip

D
ef

in
it

io
n

s
of

T

h
in

gs

D
ef

in
it

io
n

s
of

T

h
in

gs
 in

 t
er

m
s

of
 P

ro
d

u
ct

,
Q

u
an

ti
ty

 a
n

d

M
on

ey

D
ef

s
of

 P
ro

d
u

ct
,

Q
u

an
ti

ty
 a

n
d

M

on
ey

A

rc
he

ty
p

e
P

at
te

rn
s

P
ro

d
u

ct
,

Q
ua

n
ti

ty
 ..

.
F

ra
m

ew
or

ks
,

D
L

L
-s

, A
P

I-
s

an
d

 D
B

 T
ab

le
s

S
of

tw
ar

e
an

d

Se
rv

ic
es

 U
si

ng

P
ro

d
u

ct
,

Q
u

an
ti

ty
 a

n
d

M

on
ey

D
ef

in
it

io
n

s
of

P

ar
ti

es
 a

nd
 t

h
ei

r
R

ol
es

D
ef

s
of

 P
ar

ti
es

an

d
 R

ol
es

 in

te
rm

s
of

 P
ar

ty

an
d

 P
ar

ty

R
el

at
io

n
sh

ip

D
ef

in
it

io
n

s
of

P

ar
ty

 a
n

d
 P

ar
ty

R

el
at

io
n

sh
ip

A

rc
he

ty
p

e
P

at
te

rn
s

P
ar

ty
 a

nd
 P

ar
ty

R

el
at

io
n

sh
ip

F

ra
m

ew
or

ks
,

D
L

L
-s

, A
P

I-
s

an
d

 D
B

 T
ab

le
s

S
of

tw
ar

e
an

d

Se
rv

ic
es

 U
si

ng

P
ar

ty
 a

n
d

 P
ar

ty

R
el

at
io

n
sh

ip

D
ef

in
it

io
n

s
of

O

rg
an

iz
at

io
n

 U
n

it
s

an
d

th
ei

r
L

oc
at

io
n

s

D
ef

s
of

 O
rg

. U
n

it
s

an
d

 L
oc

at
io

n
s

in

te
rm

s
of

 P
ar

ty
 a

nd

P
ar

ty
 R

el
at

io
n

sh
ip

D
ef

in
it

io
n

s
of

 P
ar

ty

an
d

 P
ar

ty

R
el

at
io

n
sh

ip

A
rc

he
ty

p
e

P
at

te
rn

s

P
ar

ty
 a

n
d

 P
ar

ty

R
el

at
io

n
sh

ip

F
ra

m
ew

or
ks

, D
L

L
-

s,
 A

P
I-

s
an

d
 D

B

T
ab

le
s

S
of

tw
ar

e
an

d

Se
rv

ic
es

 U
si

ng

P
ar

ty
 a

n
d

 P
ar

ty

R
el

at
io

n
sh

ip

D
ef

in
it

io
n

s
of

B

us
in

es
s

R
ul

es

D
ef

in
it

io
n

s
of

 a
ll

B
us

in
es

s
R

ul
es

in

 t
er

m
s

of
 R

u
le

D
ef

in
it

io
n

 o
f

R
u

le
 A

rc
he

ty
p

e
P

at
te

rn

R
u

le

F
ra

m
ew

or
ks

,
D

L
L

-s
, A

P
I-

s
an

d
 D

B
 T

ab
le

s

S
of

tw
ar

e
an

d

Se
rv

ic
es

 U
si

ng

R
u

le

D
ef

in
it

io
n

s
of

B

us
in

es
s

E
ve

nt
s

D
ef

in
it

io
n

s
of

B

us
in

es
s

E
ve

nt
s

in
 t

er
m

s
of

In

ve
n

to
ry

 a
n

d

O
rd

er

D
ef

in
it

io
n

s
of

In

ve
n

to
ry

 a
n

d

O
rd

er

A
rc

he
ty

p
e

P
at

te
rn

s

In
ve

n
to

ry
 a

n
d

O

rd
er

F

ra
m

ew
or

ks
,

D
L

L
-s

, A
P

I-
s

an
d

 D
B

 T
ab

le
s

S
of

tw
ar

e
an

d

Se
rv

ic
es

 U
si

ng

In
ve

n
to

ry
 a

n
d

O

rd
er

Figure 1. Zachman framework with archetype patterns

68 Domain Engineering for Cyber Defense: a Case Study and Implications

quantity (Arlow&Neustadt 2003) archetype patterns for modeling things. Examples
of things (derived from agent-oriented model for terrorists behavior (Tepandi 2002))
in the domain of defense can be: resource, level of resources, level of knowledge,
knowledge, level of aggressiveness, aggressiveness, probability of reproduction,
probability of expiration, level of access to resources, level of access to information,
information, etc.

Column 2 (How) describes processes. In ABD we model processes using their feed-
backs (Fig. 2) given by one party to other. We use a party relationship archetype
pattern *Arlow&Neustadt 2003) for modeling such feedbacks. The examples of pro-
cesses in the domain of terrorism simulation (Tepandi 2002) are birth of agent,
death of agent, learning, forgetting, earning, spending, social interaction, terrorist
act, charity act, etc.

These processes can be modeled as reports from one party (informer for example)
to other (central agency for example) or from one party (informer) about another
party (terrorist for example). More reports from trusted and different parties means
better and more implicit picture about the whole process.

�

�

�

�

input process output

feedback

Figure 2. Process and feedback

Column 3 (Where) describes environment. School, hospital, organization, district,
region, state, world, infrastructure, and computer network are examples of environ-
ments. In ABD we use party and party relationship (Arlow&Neustadt 2003) arche-
type patterns for modeling environments. We describe the structure of environment
in terms of environment units (for instance, organizations are described in terms
of organization units ‒ division, department, team, group, etc). The role types each
environment unit has to play in the environment are presented. The responsibili-
ties (assigned, mandatory and optional), requirements for responsibilities, as well
as conditions for their satisfaction for each role type and for each environment unit
are depicted.

Column 4 (Who) describes the agents (persons, organizations, artificial agents) and
their roles somehow related to the environment described by Column 3. In ABD we
use the party and party relationship (Arlow&Neustadt 2003) archetype patterns for
modeling agents and agent roles. Examples of roles of agents in domain of defense
are terrorist, informer, agency, etc.

69Jaak TEPANDI, Gunnar PIHO, Innar LIIV

Column 5 (When) describes the events related to the processes described by Col-
umn 2. The events must be logged for audit trail or for the late analysis. In ABD we
use order and inventory (Arlow&Neustadt 2003) archetype patterns for modeling
events. This means that every event will generate (or will change or amend) some
order to change something in the inventory. The inventory is a repository for impor-
tant information about the environment. An example of an event is a report about
terrorist behavior.

Column 6 (Why) describes the strategies and strategic questions such as “Is the
level of aggressiveness high?”, “Is the population terminated?”, “Is this person a ter-
rorist?”, etc. In ABD we use the simple propositional calculus-based rule archetype
pattern (Arlow&Neustadt 2003) as the basic model for strategies.

3.2 EXAMPLES OF ARCHETYPE-BASED MODELS
The following examples are archetype-based models of defense domain. For model-
ing of things (Column 1 in ZF) we use either product or quantity archetype patterns.
As an example, for modeling agent properties like knowledge and aggressiveness,
we use quantity (Fig. 3). A quantity is an amount of something characterized accord-
ing to some measure and corresponding units.

TKnowledge

TMeasure

Class

TAggressiveness

TMeasure

Class

TLevelOfKnowledge

TBaseUnit

Class

TLevelOfAggressiveness

TBaseUnit

Class

TBaseUnit

TUnit

Class

TMeasure

TMetrics

Class

TUnit

TMetrics

Abstract Class

TSystemOfUnits

TEntity

Class

TDerivedUnit

TUnit

Class

Measure

SystemOfUnits

Figure 3. The agent properties

The class diagram in Fig. 3 (prefix “T” in class names comes from “type” or “arche-
type”) comprises two measures (TKnowledge and TAggressivness) and two units
(TLevelOfKnowledge and TLevelOfAggressivness). Both units are inherited from the
TBaseUnit. As a result, the units inherit automatically the functions associated with
the base unit such as arithmetic operations (addition, subtraction, and so on), round-

70 Domain Engineering for Cyber Defense: a Case Study and Implications

ing, or translation of quantity from one unit to other.

TProductType

TEntityWithRegisteredIdentifiers

Class

TProductInstance

TEntity

Class

TPrice

TEntity

Class

TProductFeatureType

TEntity

Class

TPackageType

TProductType

Class

TPropositionOfInclusion

TEntity

Class

TPackageInstance

TProductInstance

Class

TProductFeatureInstance

TEntity

Abstract Class

TProductCatalog

Class

TCatalogEntry

TEntity

Class

Prices

FeatureTypes

ProductType

Features

Price

Components

Propositions

Package

Contents

ProductFeatureType

Entries

ProductTypes

Figure 4. Product archetype pattern abstraction

Some objects in the domain of defense, for example agent resources, are different
kinds of products and/or services. All those things that an agent can in principle buy
or sell can be modeled by using the product archetype pattern (parts of this pattern
are presented in Fig. 4). Product type describes the common properties of a set of
goods or services and product instance represents a specific instance of a product
type. Product feature type and product feature are used either to represent possible
product type features (like set of possible colors) or to represent concrete features of
specified product instance. Packages (package type and instance respectively) are
selections of products grouped together as a product unit. Components in package
type are used when a package consists of a fixed set of products; a product set is
used to represent a set of product types from which selection by some rule may be
made. A product relationship is a relationship (upgrade, substitute, replace, comple-
ment, compatible, and incompatible) between product types. A price is the amount
of money that must be paid in order to purchase a product. A product type has pos-

71Jaak TEPANDI, Gunnar PIHO, Innar LIIV

sible prices whereas the product instance has an agreed price. The pricing strategy
determines how a price is calculated for a package type. Product catalog is a store
of product information where catalog entry holds the information about a particular
type of product in a product catalog. Similarly, a batch describes a set of product
instances of a specific product type that must be tracked together, for example, for
quality control purposes.

TAddress

TEntity

Abstract Class

TPartyRole

TEntity

Abstract Class

TPartyRelationship

TEntity

Class

TNotification

TPartyRelationship

Abstract Class

TNotificationThread

TEntity

Class

TNotificationServiceCase

TEntity

Class

TNotificationManager

TEntity

Class

TPartySignature

TEntity

Class

TAction

TEntity

Class

TOutcome

TEntity

Class

TTerroristsOrganization

TPartyRole

Class

TTerrorist

TPartyRole

Class

TTAgent

TPartyRole

Class

TParty<TName, T…

TEntity

Generic Abstract Class

TCapability

TRuleContext

Class

Client
Supplier

FromAddress

WhereAddress

Actions

Next

Previous

Participant

Notifications

Terminator

CaseManager

Threads

NotificationCases

Possible Actual

Initiator

Approvers

Approvers

Addresses

Capabilities

Roles

Figure 5. Notification archetype pattern abstraction

For modeling of processes (Column 2 in ZF) we use the party relationship archetype
pattern as a base. For example the notification archetype pattern (Fig. 5) concret-
izes the party relationship archetype (Arlow&Neustadt 2003) and is similar to the
customer relationship management archetype pattern (Arlow&Neustadt 2003). In
notification, the agent (TAgent) “from” address notifies about some event which has
happened in the “where” address. In case of terrorism simulation, this may be a
party relationship where one agent informs the agency about the behavior of the
terrorist’s organization or about the behavior of someone who acts on behalf of a
terrorist’s organization. More than one terrorist or terrorist’s organization ‒ partici-
pants ‒ can be involved in event the about which the agent has reported. A notifica-
tion routing is a special case of notification, which represents notification handovers
from agent to agent. Notification case tracks all notification threads (sequence of
notification) about a specific topic related to a specific terrorist’s organization or ter-
rorist. Action represents something that can or must happen (logging of information

72 Domain Engineering for Cyber Defense: a Case Study and Implications

or some other action for example) after the notification.

Notifications and actions (logging of information) these notifications generate may
be, for example, information about birth (new member of a terrorist’s organization
or new terrorist’s organization), death (death of a terrorist or terrorist’s organiza-
tion), earning (terrorist or terrorist’s organization has got more resources), learning
(terrorists have got new information) and so on.

For modeling of the environment (Column 3 in ZF) we use the party and party re-
lationship (Arlow&Neustadt 2003) archetype patterns. The party archetype (Fig.
6) represents a (identifiable, addressable) unit that may have a legal status and has
some autonomous control over its actions. Persons and organizations are parties.

TAddress

TEntity

Abstract Class

TPersonName

TPartyName

Class

TPreference

TEntity

Class

TPartyAuthentication

TEntity

Class

TPartySignature

TEntity

Class

TPreferenceType

TEntity

Class

TPreferenceOption

TEntity

Class

TCapability

TRuleContext

Class

TParty<TName, T…

TEntity

Generic Abstract Class

TOrganization

TParty<TOrganization…

Abstract Class

TPerson

TParty<TPersonName…

Class

TRegisteredIdentifier

TEntity

Class

TPartyRole

TEntity

Abstract Class

TBodyMetric

TEntity

Class

TOrganizationName

TPartyName

Class

Option

Type

Authentication
Options

Addresses

Identifiers

Preferences

Capabilities

Authentications

Roles

Names

BodyMetrics

Names

Figure 6. Party archetype pattern abstraction

Party has zero or more addresses (phone number, e-mail, web address, postal ad-
dress) where one and the same address can belong to more than one parties. Party
has zero or more registered identifiers (passport, VAT number, domain name, stock
exchange symbol, etc). Party authentication is a way to confirm that the party is
who they say they are. Each party can play different roles (one and the same person
can be for example a student and a member of terrorist’s organization). Preference

73Jaak TEPANDI, Gunnar PIHO, Innar LIIV

stands for a party’s (or a role’s) choice of or linking for something (like dietary prefer-
ence) and is typically selected from a set of options. The capability is a collection of
facts about what a person or organization is capable of doing as well as body metric
stores information about the human body. For example the world global properties
(Tepandi 2002) like InitialPopulation, GlobalEndOfPopulation, GlobalAccessLevel-
ToInformation, etc., are capabilities of a party called the world (set of agents).

TPartyRole

TEntity

Abstract Class

TPartyRelationship

TEntity

Class

TAssignedResponsibility

TEntity

Class

TPartyRoleType

TEntity

Class

TResponsibility

TEntity

Class

TPartyRelationshipConstraint

TEntity

Class

TCapability

TRuleContext

Class

TRuleSet

TEntity

Class

TPartyRelationshipType

TEntity

Class

TParty<TName, T…

TEntity

Generic Abstract Class

TPreference

TEntity

Class

Responsibilities

TypePreferences

Type

Client

Supplier

Responsibility

Mandatory Optional

Requirements

ConditionsOfSatisfaction

RequirementsForResponsibility

Requirements

ValidRolePairs

Preferences

Capabilities

Roles

Figure 7. Party relationship archetype pattern abstraction

Fig. 7 abstracts the party relationship archetype pattern, which captures a fact about
the semantic relationship between two parties in which each party plays a specific
role. Binary (more flexible and cleaner than n-ary) relationship is used, which means
that one relationship binds two roles called “client” and “supplier”. It has to be clari-
fied that the role is always solely used to store information that belongs to the role
itself and not either to a party or to a relationship. Role type is used to store com-
mon information for a set of similar roles; relationship type is used to store common
information for a set of a similar relationship instances. Responsibility describes a
particular activity that a party, playing a role, may be expected to perform, where
the assigned responsibility captures the fact that responsibility is assigned to con-
crete party playing that role. Conditions of satisfaction, as well as the requirements
for party role type, for party relationship type and for responsibility are rule sets
(see rule archetype below). Here the capability (rule context) contains information
needed for the execution of rules; in case of a party, this information states whether
a party can complete necessary responsibilities for its role in relationship. In ABD
we use party relationship archetype pattern for modeling of internal structure (for

74 Domain Engineering for Cyber Defense: a Case Study and Implications

example all immobile under the defense) and chains of command in the environ-
ment.

The same party and party relationship archetypes are used for modeling of persons
(Column 4 in ZF). While in the case of Column 3 (location) the target is to model the
environment where the business takes place, in case of Column 4 we model all the
stakeholders somehow active or related to the business in question.

Although the location and stakeholder-related domain aspects are both modeled by
the party relationship archetype pattern, these models themselves are different. In
the case of locations we use the party relationship archetype pattern to model the
internal structure of the environment, for example the organizational structure of
the enterprise. In the case of stakeholders, we model specific employers, customers,
sellers, patients, terrorists and other independent agents with their relationships
with the environment in question. We also model the possible relationships between
independent agents (e.g. employer A is wife of employer B, and so on).

TOperator

TRuleElement

Abstract Class

TProposition

TVariable

Class

TRule

TEntity

Class

TRuleContext

TEntity

Class

TRuleElement

TEntity

Abstract Class

TRuleOverride

TPropositionValue

Class

TRuleSet

TEntity

Class

TPartySignature

TEntity

Class

TPropositionValue

TVariableValue<bool>

Class

TVariableValue<T>

TVariableValue

Generic Abstract Class

TVariable

TRuleElement

Class

TVariableValue

TVariable

Abstract Class

Elements Elements

RuleOverride

Actuator

Verifiers

RuleOverrides

Rules

Figure 8. Rule archetype pattern abstraction

The processes (Column 2 in ZF) comprise actions. These actions are triggers for
events modeled by Column 5 of ZF (when). For modeling of events, we use the order
and inventory archetype patterns. An action generates a document. This document
is some type of order, and according to this order, the inventory of environment
(Column 3) will be updated.

75Jaak TEPANDI, Gunnar PIHO, Innar LIIV

The last column of ZF (why) describes strategies. For modeling strategies, we use
rule archetype patterns. A rule archetype pattern (Fig. 8) is a constraint on the
operation of the software systems of the business. The rule semantics is defined by
sequence of rule elements. Rule elements can be operators, propositions (a state-
ment that has a truth value) and variables. Operator is either a Boolean operator
(and, or, xor, not) or quantifier operator (=, !=, <, >, <=, >=). While a rule represents
some kind of mask or pattern, the rule context contains the informational context
for the execution of a rule. Rule context represents this information as a collection of
rule elements that may be propositions or variables, but not operators. The following
sets are examples of simple rule (R) and respective rule context (C) (Arlow&Neustadt
2003).

 R = {IsGoldCardHolder, IsSilverCardHolder, OR,
 CarryOnBaggageKg, AllowedBaggageKg, LESS, AND}
 C = {true, false, 4.5, 5.0}

IsGoldCardHolder and IsSiverCardHolder are propositions which take the actual
value from the context C (true and false, respectively). CarryOnBaggageKg and Al-
lowedBaggageKg are variables which take the actual values (4.5 and 5.0) from con-
text. OR, LESS and AND are operators.

3.3 FROM DOMAIN VIA REQUIREMENTS TO
SOFTWARE

The triptych software process (Bjorner 2006) ‒ from domain model via require-
ments to software ‒ has a very simple informal description: before starting to write
software, we need to know the requirements; before knowing requirements, we have
to understand the domain; to understand the domain we have to study one. The
interpretation on ZF rows in terms of triptych (requirements, domain, and software)
development can be as follows.

Row 1 (conceptual model) is just the glossary (list of things, objects, assets, etc.) that
defines the scope or boundary of requirements. For example the cell defining the
scope for Column 4 (people) for the domain of defense can include terms like agent,
terrorist, informer, agency, and so on.

Row 2 (business / semantic model) is a definition and a model of the actual require-
ments. It defines the concepts (terms and facts) actually needed. This can be rep-
resented as simple narratives (for instance “terrorist has an alias”, “informer has a
codename”, etc.) or in some more formalized (for example class diagrams) notation.

Row 3 (system / logical model) describes the requirements in terms of domain

76 Domain Engineering for Cyber Defense: a Case Study and Implications

model. For Column 4 this means for example, that “terrorist is the role for person”,
“terrorists alias is a name for person whose role is a terrorist”, etc.

Row 4 (technology / physical model) is the actual model of the domain. For Column
4 this is the model of the party archetype pattern.

Row 5 (detailed definition) is the party archetype pattern realized for example as
API, or as a database scheme supporting this pattern under some specific database
engine.

Row 6 (product) is the software or service which fulfils the requirements from row
1 and row 2.

Due to the technological infrastructure and nature of attacks, it is possible to have
two strategies for implementation of cyber defense domain engineering. One ap-
proach is to model the normal behavior in systems with a goal of detecting abnormal
events, behavioral outliers, etc. Another, complementary approach is to model spe-
cific attack types (e.g. DDoS attacks (Mirkovic&Reiher 2004, Douligeris&Mitrokotsa
2004)). Archetype-based domain engineering allows simultaneously both top-down
(building models from existing taxonomies of attacks) and bottom-up (generalizing
data-driven models from detailed event logs) approaches. Archetypes representing
normal behavior of the system and a specific attack must be described in a way to
allow semi-automatic synthesis of simulation procedures.

4. CONCLUSIONS
We have described a case study of predicting the results of terrorist behavior,
stressed the need for adequate domain engineering for simulation and cyber de-
fense tasks, and proposed an approach to integrating cyber defense and simula-
tion data representations using domain engineering with archetype-based domain
engineering.

As open challenges and directions for further work, the cyber defense domain can
be viewed as an integration of object and process views. Domain engineering for the
processes and integration of object and process representations are some directions
for further work.

This work was partially financed from ESF grant No. 6839 and target financing
grant SF0140013s10.

77Jaak TEPANDI, Gunnar PIHO, Innar LIIV

REFERENCES
 - Arlow, J., Neustadt, I., 2003. Enterprise Patterns and MDA: Building Better Software With Archetype

Patterns and UML : Addisson-Wesly.

 - ASTM. 2006. E1578-06 Standard Guide for Laboratory Information Management Systems (LIMS) :
ASTM International.

 - Björner, D., 2006. Software Engineering, Vol. 3: Domains, Requirements, and Software Design. Texts in
Theoretical Computer Science, the EATCS Series : Springer.

 - C. Douligeris, C. and A. Mitrokotsa, A, 2004. DDoS Attacks and Defense Mechanisms: Classification
and State-of-the-art, Comp. Networks, vol. 44, pp. 643‒66.

 - Department of Homeland Security. 2009. National Infrastructure protection Plan.

 - ENISA. 2009. Good Practice Guide on National Exercises. Enhancing the Resilience of Public Com-
munications Networks.

 - Greenfield, J., et al., 2004. Software Factories: Assembling Applications with Patterns, Models, Frame-
works, and Tools : Wiley.

 - Mirkovic, J. and Reiher, P., 2004. A taxonomy of DDoS attacks and defence mechanisms. ACM SIG-
COMM Computer Communications Review, 34(2):39‒54, Apr. 2004.

 - Piho, G., Roost, M., Perkins, C., and Tepandi, J., 2009. Towards Archetypes Based Software Develop-
ment. CISSE. (accepted for publication).

 - Presidency of the Council of the European Union., 2009. “Conference conclusions.” Tallinn : s.n., 27-28
April, 2009. European Union Ministerial Conference on Critical Information Infrastructure Protec-
tion.

 - Sommerville, I., 2006. Software Engineering. : Addison-Wesley.

 - Tepandi, J. and Vassiljev, S., 2008. Conflict Expansion in an Information Rich Society: Feasibility of
Corrective Actions. [ed.] E. Khaled. Innovations and Advanced Techniques in Systems, Computing Sci-
ences and Software Engineering : Springer, pp. 231-236. ISBN 978-1-4020-8734-9.

 - Tepandi, J., 2002. Simulation of Conflict in an Agent World: Access to Resources and Possibility of
Termination of the Population. Informatica., Vol. 13, 4, pp. 501-512.

 - Thomas, J. J. and Cook, K. A., 2005. Illuminating the Path. The Research and Development Agenda for
Visual Analytics. : National Visualization and Analytics Center.

 - Zachman, J. A., 1987. A Framework for Information Systems Architecture. IBM Systems Journal. Vol.
26, 3.

 - Zachman, J. A., 2003b. The Zachman Framework: A Primer for Enterprise Engineering and Manufac-
turing. 2003b.

 - Zachman, J. A., 2003a. The Framework for Enterprise Architecture ‒ Cell Definition. ZIFA .

