

Event Log Analysis with the LogCluster Tool

Risto Vaarandi, Markus Kont and Mauno Pihelgas

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper has been accepted for publication at the 2016 IEEE Military Communications Conference, and the final version of the

paper is included in Proceedings of the 2016 IEEE Military Communications Conference

(DOI: 10.1109/MILCOM.2016.7795458)

Event Log Analysis with the LogCluster Tool

Risto Vaarandi

TUT Centre for Digital Forensics and Cyber Security

Tallinn University of Technology

Tallinn, Estonia

firstname.lastname@ttu.ee

Markus Kont and Mauno Pihelgas

Technology Branch

NATO CCD COE

Tallinn, Estonia

firstname.lastname@ccdcoe.org

Abstract—Today, event logging is a widely accepted concept

with a number of event formatting standards and event collection

protocols. Event logs contain valuable information not only about

system faults and performance issues, but also about security

incidents. Unfortunately, since modern data centers and

computer networks are known to produce large volumes of log

data, the manual review of collected data is beyond human

capabilities. For automating this task, a number of data mining

algorithms and tools have been suggested in recent research

papers. In this paper, we will describe the application of the

LogCluster tool for mining event patterns and anomalous events

from security and system logs.

Keywords—security log analysis; event log clustering; pattern

mining from event logs; data mining

I. INTRODUCTION

Nowadays, event logging is supported by most
applications, services, network devices, and other IT system
components. Well-known standards exist for event logging
(such as BSD syslog [1] and IETF syslog [2]) and widely used
solutions have been developed for event log collection (such as
rsyslog [3], syslog-ng [4], and Elastic Stack [5]). Event logs
contain valuable information about security incidents, but since
large volumes of log data are generated in modern data centers
and computer networks [6], the manual review of event logs is
infeasible. In order to aid the human analyst, a number of data
mining algorithms and tools have been proposed [7–22]. Many
suggested approaches are semi-automated, allowing for
interactive discovery of event patterns from event logs. This
knowledge can be used for various purposes like handling
security incidents and developing event correlation rules [23].
During the last decade, data clustering algorithms have been
often suggested for mining line patterns from textual event
logs. Proposed algorithms assume that each line in the event
log is a complete representation of some event. The algorithms
divide the lines into clusters, so that lines from the same cluster
are similar and matching the same line pattern. Instead of
printing lines in each cluster, the algorithms output a line
pattern for each cluster to the end user. Also, lines that do not
fit into any of the detected clusters are arranged into a special
cluster of outliers and reported individually. Due to their
nature, clustering algorithms are able to identify not only event
patterns that reflect regularities, but also unusual outlier events
that deserve closer attention from security personnel.

In this paper, we describe the LogCluster tool for mining
textual event logs and present example scenarios of detecting

security incidents and anomalous events. Full details of the
clustering algorithm implemented by the tool have been given
in our recent paper [7]. The remainder of this paper is
organized as follows – section II reviews related work, section
III describes the LogCluster tool and focuses on its newly
developed functionality along with several use cases, while
section IV concludes the paper and provides the download and
licensing information for the LogCluster tool.

II. RELATED WORK

One of the earliest event log clustering algorithms is SLCT
[8] which has been applied in various domains like IDS alarm
log processing [9, 10], detection of recurrent fault conditions
[11, 12], and visualization of event log data [19, 20]. SLCT
takes support threshold s as a user-given input parameter, and
starts the clustering process by identifying frequent words that
appear in s or more event log lines. The words are considered
with positional information, e.g., if the fifth word of the event
log line is kernel, it is treated as a tuple (kernel, 5). After
identifying frequent words, another pass is made over input
data for assigning lines to cluster candidates. For each line, all
frequent words are extracted, and the candidate for this line is
identified by the set of extracted words. After the data pass,
frequent candidates that contain s or more lines are selected as
clusters. The number of lines in a cluster (or a candidate) is
called the support of the cluster (or the candidate). For
example, consider the event log with four lines:

User bob login from 10.0.0.1

User alice login from 10.0.0.1

User jim login from 10.0.0.2

User Srv Admin login from 10.0.0.3

If s=3, the words (User, 1), (login, 3), and (from, 4) are
detected as frequent. Also, two candidates are identified – the
candidate {(User, 1), (login, 3), (from, 4)} with support 3 that
contains first three lines, and the candidate {(User, 1)} with
support 1 that contains the last line. The first candidate is
selected as a cluster and is reported as the line pattern User *
login from (since the cluster has no word associated with
position 2, a wildcard is printed for this position). Finally, the
last line is reported as an outlier.

Unfortunately, SLCT is known to suffer from some
shortcomings [9, 12, 13]. Firstly, it does not detect wildcard
suffixes for line patterns as illustrated by the previous example.

This work has been supported by Estonian IT Academy (StudyITin.ee)
and SEB Estonia.

Secondly, SLCT is sensitive to word delimiter noise and shifts
in word positions. For instance, in the above example the last
event log line is not assigned to the cluster represented by the
pattern User * login from. Finally, when mining is conducted
with lower support thresholds, SLCT is prone to overfitting –
clusters with meaningful line patterns could be needlessly split,
so that resulting clusters have too specific line patterns. For
example, if s=2 for the above event log example, only the
pattern User * login from 10.0.0.1 is detected which does not
represent the general case.

Recently, we have developed a clustering algorithm called
LogCluster that addresses the shortcomings of SLCT [7].
Similarly to SLCT, the user must supply the support threshold
s to LogCluster which is used for finding frequent words
during the first pass over the event log. However, positional
information is not encoded into words. In order to identify a
cluster candidate for each event log line during the second data
pass, LogCluster extracts all frequent words from the line and
arranges them into a tuple. Also, summary information about
infrequent words in all assigned lines is maintained with each
candidate. Candidates containing s or more lines are selected as
clusters and reported as line patterns, while lines without a
cluster are regarded outliers and reported during an optional
data pass. For instance, if s=3 for the example event log above,
all lines are assigned to the cluster identified by the tuple
(User, login, from), and the line pattern User *{1,2} login from
*{1,1} is reported for this cluster together with its support of 4.

Reidemeister et al developed a methodology for diagnosing
recurrent faults in software systems which employs a modified
version of SLCT for software logs [11, 12]. In order to handle
delimiter noise and shifts in word positions, results from SLCT
are clustered further with a single-linkage clustering algorithm
that uses a Levenshtein distance function. Detected knowledge
is then harnessed for building decision tree classifiers.

Makanju developed a divisive clustering algorithm IPLoM
that starts with the event log as a single cluster and splits it into
partitions during three steps [13]. Splitting is based on various
criteria, such as the number of words in event log lines and
associations between word pairs. After splitting, a line pattern
is derived for each partition. Unlike SLCT, IPLoM is able to
identify wildcard suffixes for line patterns.

Apart from clustering algorithms, frequent itemset mining
methods have been often employed for event log mining.
LogHound is a generalization of the Apriori algorithm that can
discover line patterns from textual event logs [9]. Other
frequent itemset mining approaches have been mainly used for
the detection of temporal associations between event types
[14–18] and for mining NetFlow traffic patterns [21, 22].

III. THE LOGCLUSTER TOOL

The LogCluster tool is an open-source Perl-based UNIX
command line utility. It is able to mine meaningful patterns
from large event logs, and our recent study provides detailed
performance data for the 0.01 version [7]. In this section, we
will review the features of the latest version and discuss several
use cases. Event logs presented in this section originate from
several large and mid-size private and military organizations,
with all sensitive data being obfuscated in Fig. 1–4.

A. Introduction and Basic Use

All parameters are supplied to the LogCluster tool with
command line options. For example, the following command
line

logcluster.pl --support=100 --input=/var/log/messages

mines line patterns from /var/log/messages with support
threshold 100. Default word delimiter is whitespace, but
custom delimiter can be defined with the --separator command
line option. In order to mine patterns from several log files,
multiple --input options can be provided and wildcards can be
used in file names (e.g., --input=/var/log/*.log). The above
command line runs the basic variant of the LogCluster
algorithm which involves two passes over /var/log/messages
for finding frequent words and cluster candidates respectively.

logcluster.pl --input=suricata.log –-support=1000 \

 --wsize=10000 --csize=10000

Feb 27 *{1,1} myhost suricata[17447]: [1:2012708:2]

ET WEB_SERVER HTTP 414 Request URI Too Large

[Classification: Web Application Attack]

[Priority: 1] {TCP} 10.0.19.12:80 -> *{1,1}

Support: 44744

Feb 5 *{1,1} myhost suricata[2223]: [1:2006445:13]

ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM

[Classification: Web Application Attack]

[Priority: 1] {TCP} *{1,1} -> 10.0.33.7:80

Support: 39692

Oct 18 *{1,1} myhost suricata[18941]: [1:2006446:11]

ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT

[Classification: Web Application Attack]

[Priority: 1] {TCP} *{1,1} -> 10.0.3.5:80

Support: 7493

Mar 15 *{1,1} myhost suricata[25554]: [1:2016936:2]

ET WEB_SERVER SQL Injection Local File Access Attempt

Using LOAD_FILE [Classification: Web Application Attack]

[Priority: 1] {TCP} *{1,1} -> 10.0.6.1:80

Support: 3293

Jan 2 *{1,1} myhost suricata[30119]: [1:2101201:10]

GPL WEB_SERVER 403 Forbidden [Classification: Attempted

Information Leak] [Priority: 2] {TCP} 10.0.3.9:80 -> *{1,1}

Support: 2826

…

Fig. 1. Sample Suricata IDS alarm patterns.

When mining larger log files, the number of distinct words
can be quite large, and with lower support thresholds many
cluster candidates could be generated. Therefore, it is
expensive to keep all words and cluster candidates in memory
when their occurrence counts are established. In order to
reduce the memory consumption by filtering out infrequent
words, a sketch based technique can be employed which
requires an extra data pass. During the data pass, the word
sketch of m counters is created, where each counter reflects the
occurrence counts of many words and acts as a filter (see [7]
for full details). A similar method can be used for filtering out
infrequent candidates. The number of counters in the word
sketch is set with the --wsize command line option, while the
size of the candidate sketch can be set with the --csize option.

Fig. 1 illustrates example line patterns detected by the
LogCluster tool from the Suricata IDS log file. The log file
covered the period of 6 months and contained 949,920 lines.

Since the support threshold was set to 1000, strong alarm
patterns were identified which reflect the days when intensive
attacks against specific hosts were conducted. During the
mining process, the word and candidate sketches of 10,000
counters were employed. Both sketches involved an additional
data pass, and the memory consumption of the LogCluster tool
was reduced from 406.2 MB to 13.4 MB.

B. Preprocessing Input

While Fig. 1 provides an example of discovering relevant
patterns from a raw log file, quite often the detection of
meaningful patterns requires elaborate preprocessing of event
logs (e.g., dropping irrelevant events, removal of timestamps,
and rewriting specific parts of event log lines). In many cases,
such tasks require dedicated scripts that store preprocessed log
data to disk. For avoiding this overhead, the LogCluster tool
provides native support for flexible input preprocessing. If a
regular expression is supplied with the --lfilter option, only the
lines matching this regular expression are clustered. Also, if the
regular expression sets match variables, the variables can be
used in the format string defined with the --template option, in
order to convert matching event log lines in memory before
further processing. Fig. 2 depicts a LogCluster application
example for SSH daemon syslog events where timestamp,
hostname, and program name were discarded during clustering
(for instance, the event log line Mar 27 12:01:33 server113
sshd[15437]: test message was converted to test message). The
authpriv.log file contained over 7 million lines from hundreds
of UNIX servers, while 98,920 lines matched the --lfilter
option and were converted. The mining was conducted with the
relative support threshold of 1% (that means setting support
threshold to 1% of the number of clustered lines, i.e., 989).
Also, 2200 outlier event log lines were detected and written to
the outliers.log file. Most outliers reflected SSH probing of
non-existing user accounts by the organizational vulnerability
scanning engine, but some outliers were also error messages
that manifested system faults and configuration errors.

In some cases, regular expression based filtering and
conversion might not be sufficient for complex preprocessing
tasks. For addressing this issue, the LogCluster tool also
supports the --lcfunc option which takes a definition of an
anonymous Perl function for its value. The function is
compiled when LogCluster starts, and the compiled code is
invoked for filtering and converting each event log line. An
event log line is passed to the function as its only input
parameter, and in order to indicate the line should not be
considered during clustering, Perl undef value must be returned
from the function. If any other value is returned, it replaces the
original event log line. For example, if the option

--lcfunc=’sub { if ($_[0] =~ s/192\.168\.\d{1,3}\.\d{1,3}/ip-
192.168/g) { return $_[0]; } return undef; }’

is employed, LogCluster only considers lines which contain
IP addresses from the 192.168.0.0/16 network, and each such
address is replaced with the string ip-192.168. Finally, since
providing longer Perl functions in command line is not
convenient, input preprocessing routines can be defined in a
separate Perl module and used through the --lcfunc interface.
For example, if the option

--lcfunc=’require “/opt/logcluster/perlmod/Test.pm”; sub {
Test::lineconvert($_[0]); }’

is provided, the function lineconvert() from the module
/opt/logcluster/perlmod/Test.pm is invoked for filtering and
converting each event log line.

logcluster.pl --input=authpriv.log --rsupport=1 --aggrsup \

--lfilter='sshd\[\d+\]: (?<msgtext>.+)' --template='$+{msgtext}' \

--outliers=outliers.log

pam_unix(sshd:session): session opened for user *{1,1} by (uid=0)

Support: 26708

Accepted publickey for *{1,1} from *{1,1} port *{1,1} ssh2

Support: 24160

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

tty=ssh ruser= *{1,2}

Support: 1362

…

examples of outlier events from outliers.log

Mar 18 04:43:43 server112 sshd[22902]: Failed password for

 invalid user emailswitch from 10.31.97.21 port 46668 ssh2

Mar 18 04:43:50 server112 sshd[22936]: Failed password for

 invalid user admin from 10.31.97.21 port 46686 ssh2

Mar 18 04:44:06 server112 sshd[23000]: Failed password for

 invalid user manage from 10.31.97.21 port 46726 ssh2

Mar 18 04:44:53 server112 sshd[23056]: Failed password for

 invalid user cisco from 10.31.97.21 port 46841 ssh2

Mar 18 06:31:38 server29 sshd[12133]: PAM unable to dlopen

 (/lib64/security/pam_oddjob_mkhomedir.so):

 /lib64/security/pam_oddjob_mkhomedir.so: cannot open shared

 object file: No such file or directory

Fig. 2. Sample SSH daemon event patterns and outlier events.

C. Defining Word Classes

In many cases, infrequent words share the same format that
is not detected during clustering. For example, the program
name of syslog messages is often followed by frequently
changing process ID, creating many infrequent words for the
same program (e.g., sshd[18991]: and sshd[7655]:). For
discovering such regularities, LogCluster supports the creation
of word classes according to user-defined rules, where each
word class represents many infrequent words and captures their
commonalities. If a regular expression is given with
the --wfilter option, word classes are set up for all words that
match this expression. Word class creation involves searching
the word for all substrings that match the regular expression
supplied with the --wsearch option, and replacing these
substrings with the string provided with the --wreplace option.
For example, with the following command line options

--wfilter=’^\w+\[\d+\]:$’ --wsearch=’\[\d+\]’ --wreplace=
’[PID]’

the word class sshd[PID]: is created for words sshd[1321]:
and sshd[9583]:, while the word class suricata[PID]: is set up
for words suricata[2133]: and suricata[17743]:. Word classes
are treated like regular words by LogCluster. If a word class is
frequent, it replaces all corresponding infrequent words during
the clustering process.

The LogCluster tool also features a more powerful --wcfunc
option which allows for the creation of word classes with a
user-defined Perl function. Unlike with regular expression

based options, multiple word classes can be created for a word,
and the classes are returned from the function as a Perl list. The
order of word classes in the list defines their priority – if the
word is infrequent, the first frequent word class from the list
replaces the word. For example, if the

--wcfunc=’sub { if ($_[0] =~ /^Chrome\/(\d+)/) { return
("Chrome/$1", "Chrome"); } }’

option is provided, word classes Chrome/49 and Chrome
are created for the word Chrome/49.0.2623.87, with
Chrome/49 having precedence over Chrome. If the word class
Chrome/49 and the word Chrome/49.0.2623.87 are infrequent,
then word class Chrome replaces Chrome/49.0.2623.87 during
the clustering process. As with the --lcfunc option described in
the previous subsection, more complex word class creation
routines can be separated into Perl modules (the LogCluster
distribution includes one such example module).

D. Joining Clusters

As discussed in section II, clusters can be split needlessly
with lower support thresholds. As a result, instead of generic
meaningful line patterns too specific patterns are detected. For
addressing the overfitting problem, LogCluster supports two
heuristics for joining clusters that make resulting line patterns
more comprehensible to the human analyst. The first heuristic
is enabled with the --aggrsup option and is applied to cluster
candidates before clusters are selected. The heuristic allows
cluster overlaps, in order to increase the support of clusters
with more generic patterns – for each cluster candidate, other
candidates with more specific line patterns are identified, and
their lines are also assigned to the given candidate. For
instance, if there are two candidates with line patterns Interface
*{1,1} down and Interface eth0 down, lines of the second
candidate are also assigned to the first candidate, and the
support of the first candidate is incremented by the support of
the second candidate. The use of the --aggrsup option has been
illustrated in Fig. 2.

The second heuristic is applied after clusters have been
selected from candidates. The heuristic relies on word weight
functions that are described below. Suppose that a and b are
frequent words, m denotes the number of event log lines where
a appears, and n denotes the number of event log lines where
both a and b appear. Provided that n > 0 (i.e., there is at least
one event log line where both a and b are present), dependency
from a to b is defined as:

dep(a, b) = n / m

Note that dep(a, a) = 1 and 0 < dep(a, b) ≤ 1, with higher
value of dep(a, b) indicating higher likelihood of observing b
when a is present. For measuring how strongly each word in
the line pattern is correlated to other words in this pattern,
LogCluster defines several word weight functions which return
values from 0 to 1. If w1,…,wk are words in the line pattern, the
word weight function f1 is defined as:

f1(wi) =  j
k
=1 dep(wj, wi) / k

The smaller the value of f1(wi), the less likely it is to
observe wi with other words of the pattern. For identifying
words with insufficient weights in line patterns, the word

weight threshold is defined with the --wweight option. For
example, if --wweight=0.5 while dep(Interface, eth0) = 0.07
and dep(down, eth0) = 0.07, then the word eth0 has insufficient
weight in the pattern Interface eth0 down, since f1(eth0) = (0.07
+ 0.07 + 1) / 3 = 0.38. The cluster joining heuristic replaces
such words with special tokens in cluster identifier tuples, and
joins two clusters if their modified tuples are identical. Then a
new line pattern is derived for the joint cluster by creating lists
from words with insufficient weights and joining wildcards
(see [7] for full details). For instance, suppose there are two
clusters with identifier tuples (Interface, eth0, down) and
(Interface, eth1, down), and line patterns Interface eth0 down
and Interface eth1 down. If words eth0 and eth1 have
insufficient weights in their respective patterns, modified
identifier tuples for both clusters are (Interface, TOKEN,
down), and two clusters are thus joined into a new cluster with
the line pattern Interface (eth0|eth1) down. Since overfitting
introduces words with lower weights into patterns, the cluster
joining heuristic helps to reduce the number of such patterns by
joining them into more meaningful patterns which are built
around strongly associated words.

The f1 word weight function has some drawbacks that have
motivated the development of additional functions in recent
versions of LogCluster. Firstly, if k is the number of words in
the pattern, then 1/k ≤ f1(wi) ≤ 1, since dep(wi, wi) = 1 (i.e., f1
allows the word to contribute 1/k to its own weight). Therefore,
if a pattern has few words, its words will be assigned higher
weights than words of longer patterns. This bias becomes more
noticeable if the same word appears several times in the
pattern, for example, interface *{1,1} down: interface *{1,2}
fault. The word weight function f2 addresses this shortcoming
by first identifying the set of unique words U for the pattern.
For instance, for the previous example pattern U = {interface,
down:, fault}. If U contains p words (i.e., p = |U|), f2 is defined
as follows:

f2(w) = (( vU dep(v, w)) – 1) / (p – 1), if p > 1

f2(w) = 1, if p = 1

For example, if dep(Interface, eth0) = 0.07 and dep(down,
eth0) = 0.07, then f1(eth0) = 0.38 for line pattern Interface eth0
down, while f2(eth0) = (0.07 + 0.07 + 1 - 1) / 2 = 0.07. By not
allowing the word to contribute to its own weight, f2 calculates
word weights in a fair way for shorter patterns.

One shortcoming of f1 and f2 weight functions is their
inability to assign higher weights to groups of strongly
associated words. For instance, suppose the line pattern is
kernel: interface *{1,1} down, and the words interface and
down always appear together (i.e., dep(interface, down) =
dep(down, interface) = 1). Also, suppose the word kernel: is
always present when words interface and down appear (i.e.,
dep(interface, kernel:) = dep(down, kernel:) = 1), while only
4% of event log lines that contain kernel: also contain the
words interface and down (i.e., dep(kernel:, interface) =
dep(kernel:, down) = 0.04). Thus, f1(kernel:) = 1 and
f1(interface) = f1(down) = 0.68, although word weights should
be distributed more evenly in this pattern, considering that
words interface and down form a very strong sub-pattern. For
achieving this purpose, the mutual dependency between
frequent words a and b is defined as:

mdep(a, b) = (dep(a, b) + dep(b, a)) / 2

Note that mdep(a, b) = mdep(b, a) and 0 < mdep(a, b) ≤ 1.
Also, high values of mdep(a, b) indicate that words a and b
usually appear together, while low values reflect the lack of
such strong association. If w1,…,wk are words in the line
pattern, the word weight function f3 is defined as:

f3(wi) =  j
k
=1 mdep(wj, wi) / k

Like the f2 function, the word weight function f4 employs
the set of unique words U for the pattern, and is defined as
follows (note that p = |U|):

f4(w) = (( vU mdep(v, w)) – 1) / (p – 1), if p > 1

f4(w) = 1, if p = 1

For instance, in the case of the previous line pattern
example mdep(interface, down) = (1 + 1) / 2 = 1, mdep(kernel:,
interface) = (0.04 + 1) / 2 = 0.52, and mdep(kernel:, down) =
(0.04 + 1) / 2 = 0.52. Therefore, f3(kernel:) = (1 + 0.52 + 0.52) /
3 = 0.68, while f3(interface) = (0.52 + 1 + 1) / 3 = 0.84 and
f3(down) = (0.52 + 1 + 1) / 3 = 0.84. In other words, compared
to f1, the f3 function assigns more weight to words interface and
down due to their strong association.

The LogCluster tool allows for choosing the weight
function with the --weightf option, e.g., --weightf=3 selects the
f3 function. Also, the --color option highlights words with
insufficient weights in reported line patterns. Finally, detected
cluster and word dependency information can be stored to the
dump file given with the --writedump option. The data from
previously created dump file can be loaded with
the --readdump option during further runs of LogCluster. This
is useful for quick evaluation of different word weight
thresholds and functions without repeating the full clustering
process that is computationally expensive. For example, the
following command line

logcluster.pl --readdump=cluster.dump --wweight=0.75

loads the cluster and word dependency data from dump file
cluster.dump, and joins clusters with the word weight threshold
0.75 and word weight function f1 (the default function).

E. Case Studies

This subsection presents some log analysis scenarios that
utilize previously described features of the LogCluster tool.
Fig. 3 provides an example of employing LogCluster in a mid-
size private organization, in order to create daily e-mail reports
from syslog events of critical servers. Nearly 12 million events
are collected each day with 150-300 detected line patterns. For
producing more meaningful patterns, word classes are created
for words which contain punctuation marks by replacing
letters, digits, and other non-punctuation characters with
character X. Replacement is not done if non-punctuation
characters are followed by [or = character, in order to preserve
keywords and program names which precede these characters
(e.g., word class to=<X@X.X> is created for the word
to=<user@example.com>). Also, the word weight threshold
0.5 and word weight function f2 are used for joining clusters.
The results of the clustering are written into the
/tmp/logcluster-rotate.dmp dump file, in order to facilitate

quick additional analysis with different word weight thresholds
and functions. Fig. 3 also depicts some example patterns
detected with the LogCluster tool. The first pattern in Fig. 3
manifests an attempt to use the organizational DNS server for
conducting DNS reflection and amplification attacks. The
second pattern represents SSH account probing from several
Internet hosts against a number of servers and routers of the
organization. Remaining patterns reflect various attempts to
distribute spam through the organizational mail server.

logcluster.pl --input=/var/log/all.log --rsupport=0.01 \

--wfilter=’[[:punct:]]’ --wsearch=’[ˆ[:punct:]]++(?![[=])’ \

--wreplace=X --writedump=/tmp/logcluster-rotate.dmp \

--wweight=0.5 --weightf=2 --csize=100000 --wsize=100000

Mar 29 X:X:X nameserver2 named[10307]: security: info: client

(X.X.X.X#X:|10.0.137.69#25345:) view authoritative: query (cache)

(’X.X.X.X.X.X/X/X’|’X.X.X.X/X/X’|’X.X.X.X.X/X/X’|’domain.nu/MX/IN’

|’isc.org/ANY/IN’) denied

Support: 198152

Mar 29 X:X:X (backupserver|vps1|nameserver1|router1|vps2|router2

|mailserver|logserver|vps3|vps4) sshd[X]: pam_unix(sshd:auth):

authentication failure; logname= uid=0 euid=0 tty=ssh ruser=

(rhost=10.3.202.120|rhost=10.88.177.98) user=root

Support: 18112

Mar 26 X:X:X mailserver X/smtpd[X]: NOQUEUE: reject: RCPT from

exch001.example.com[10.52.134.35]: 454 4.7.1 <user@example.com>:

Relay access denied; from=<> to=<user@example.com> proto=ESMTP

helo=<webmail.example.com>

Support: 941

Mar 17 X:X:X mailserver X/smtpd[X]: warning: hostname

host94165.example.com does not resolve to address X.X.X.X

Support: 1217

Mar 9 X:X:X mailserver X/smtpd[X]: NOQUEUE: reject: RCPT from

unknown[X.X.X.X]: 554 5.7.1 Service unavailable; Client host

[X.X.X.X] blocked using cbl.abuseat.org;

Blocked - see X://X.X.X/X.X?ip=X.X.X.X; from=<X@X.X> to=<X@X.X>

proto=ESMTP *{1,1}

Support: 1219

…

Fig. 3. Sample attack patterns detected from syslog events.

In some cases, it might not be convenient to cluster the
event log with one LogCluster run, since higher support
threshold might yield too many outliers, while with lower
support threshold a large number of clusters might be
produced. This problem often appears for event logs which
contain events from many servers and programs, and feature
meaningful line patterns with a wide variety of supports. For
addressing this problem, LogCluster can be used iteratively,
clustering results from previous execution(s) at each step. Fig.
4 provides an example of iterative clustering of the mail.log
file which contained syslog messages with mail facility from a
number of mail servers. During the first iteration with relative
support threshold 0.1%, each event log line was converted to a
program name string, so that detected line patterns indicated
programs that have produced most log messages in mail.log. A
cluster for the sendmail daemon was discovered, and during
the second iteration with relative support threshold 0.1% it was
split into smaller clusters by analyzing the message text after
the program name. The second iteration yielded 268 patterns
that reflected normal system activity and 10,264 outliers. The
outliers were clustered further with support threshold 50. As a
result, 105 patterns and 2018 outliers were detected, with many

patterns and outliers representing error conditions and
abnormal events such as connection attempts from spammers.

logcluster.pl --input=mail.log --rsupport=0.1 \

--lfilter=' ([\w\/.-]+)\[\d+\]: ' --template='$1[PID]:'

sendmail[PID]:

Support: 1007754

…

logcluster.pl --input=mail.log –rsupport=0.1 --aggrsup \

--lfilter='sendmail\[\d+\]: (.+)' --template='$1' \

--separator='(?:\s+|=)' --outliers=outliers.log

*{1,1} from *{1,5} size *{1,1} class 0, nrcpts 1, msgid *{1,5}

proto ESMTP, daemon MTA, relay *{1,5}

Support: 161976

STARTTLS client, relay *{1,1} version TLSv1/SSLv3, verify OK,

cipher AES128-SHA, bits 128/128

Support: 71062

…

logcluster.pl --input=outliers.log --support=50 --aggrsup \

--lfilter 'sendmail\[\d+\]: (.+)' --template '$1' \

--separator='(?:\s+|=)' --outliers=outliers2.log

*{1,1} ruleset check_rcpt, arg1 *{1,1} relay *{1,2} reject 550

5.1.1 *{1,1} User unknown

Support: 441

*{1,1} SYSERR(root): collect: I/O error on connection from *{1,1}

from *{1,2}

Support: 104

…

examples of outlier events from outliers2.log

Mar 29 03:51:28 mailserver sendmail[30101]: ruleset=check_relay,

 arg1=box.example.com, arg2=127.0.0.1, reject=550 5.7.1

 Rejected: 10.193.172.92 listed at xbl.spamhaus.org

Mar 29 08:28:07 mailserver sendmail[6276]: XXX: mail.example.com

 [10.109.254.117]: Possible SMTP RCPT flood, throttling.

Mar 29 10:23:58 mailserver sendmail[22746]: XXX:

 ruleset=check_mail, arg1=<pzfsibdlkj@sjfqc.biz>,

 relay=[10.240.79.7], reject=553 5.1.8 <pzfsibdlkj@sjfqc.biz>...

 Domain of sender address pzfsibdlkj@sjfqc.biz does not exist

Fig. 4. Iterative analysis of mail server events.

IV. CONCLUSION

In this paper, we have presented the LogCluster tool for
mining line patterns and outlier events from textual event logs.
We have also described several scenarios of discovering
security incidents and anomalous events with this tool. For a
more detailed information on its performance and comparison
with other log clustering algorithms, the reader is referred to
our recent paper [7].

For the future work, we plan to harness the LogCluster tool
for insider threat detection and to modify the LogCluster
algorithm for stream mining purposes. The LogCluster tool has
been released under the terms of GNU GPLv2 and is available
from http://ristov.github.io/logcluster.

ACKNOWLEDGMENT

The authors thank Mr. Kaido Raiend, Mr. Ain Rasva, Mr.
Raimo Peterson, Mrs. Katrin Kriiska, Prof. Olaf M. Maennel,
and Dr. Rain Ottis for supporting this work.

REFERENCES

[1] C. Lonvick, “The BSD syslog Protocol,” RFC3164, 2001.

[2] R. Gerhards, “The Syslog Protocol,” RFC5424, 2009.

[3] http://www.rsyslog.com

[4] https://www.balabit.com/network-security/syslog-ng

[5] https://www.elastic.co

[6] Risto Vaarandi and Mauno Pihelgas, “Using Security Logs for
Collecting and Reporting Technical Security Metrics,” in Proceedings of
the 2014 IEEE Military Communications Conference, pp. 294-299.

[7] Risto Vaarandi and Mauno Pihelgas, “LogCluster – A Data Clustering
and Pattern Mining Algorithm for Event Logs,” in Proceedings of the
2015 International Conference on Network and Service Management,
pp. 1-7.

[8] Risto Vaarandi, “A Data Clustering Algorithm for Mining Patterns From
Event Logs,” in Proceedings of the 2003 IEEE Workshop on IP
Operations and Management, pp. 119-126.

[9] Risto Vaarandi, “Mining Event Logs with SLCT and LogHound,” in
Proceedings of the 2008 IEEE/IFIP Network Operations and
Management Symposium, pp. 1071-1074.

[10] Risto Vaarandi and Kārlis Podiņš, “Network IDS Alert Classification
with Frequent Itemset Mining and Data Clustering,” in Proceedings of
the 2010 International Conference on Network and Service
Management, pp. 451-456.

[11] Thomas Reidemeister, Miao Jiang and Paul A.S. Ward, “Mining
Unstructured Log Files for Recurrent Fault Diagnosis,” in Proceedings
of the 2011 IEEE/IFIP International Symposium on Integrated Network
Management, pp. 377-384.

[12] Thomas Reidemeister, “Fault Diagnosis in Enterprise Software Systems
Using Discrete Monitoring Data,” PhD Thesis, University of Waterloo,
2012.

[13] Adetokunbo Makanju, “Exploring Event Log Analysis With Minimum
Apriori Information,” PhD Thesis, University of Dalhousie, 2012.

[14] Mika Klemettinen, “A Knowledge Discovery Methodology for
Telecommunication Network Alarm Databases,” PhD thesis, University
of Helsinki, 1999.

[15] Qingguo Zheng, Ke Xu, Weifeng Lv and Shilong Ma, “Intelligent
Search of Correlated Alarms from Database Containing Noise Data,” in
Proceedings of the 2002 IEEE/IFIP Network Operations and
Management Symposium, pp. 405-419.

[16] Sheng Ma and Joseph L. Hellerstein, “Mining Partially Periodic Event
Patterns with Unknown Periods,” in Proceedings of the 17th
International Conference on Data Engineering, pp. 205-214, 2001.

[17] James J. Treinen and Ramakrishna Thurimella, “A Framework for the
Application of Association Rule Mining in Large Intrusion Detection
Infrastructures,” in Proceedings of the 2006 Symposium on Recent
Advances in Intrusion Detection, LNCS Vol. 4219, Springer, pp. 1-18.

[18] Chris Clifton and Gary Gengo, “Developing Custom Intrusion Detection
Filters Using Data Mining,” in Proceedings of the 2000 IEEE Military
Communications Conference, pp. 440-443.

[19] Jon Stearley, “Towards Informatic Analysis of Syslogs,” in Proceedings
of the 2004 IEEE International Conference on Cluster Computing, pp.
309–318.

[20] Adetokunbo Makanju, Stephen Brooks, A. Nur Zincir-Heywood and
Evangelos E. Milios, “LogView: Visualizing Event Log Clusters,” in
Proceedings of the 6th Annual Conference on Privacy, Security and
Trust, pp. 99-108, 2008.

[21] Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner and Kavè
Salamatian, “Anomaly Extraction in Backbone Networks using
Association Rules,” in Proceedings of the 2009 ACM SIGCOMM
Internet Measurement Conference, pp. 28-34.

[22] Eduard Glatz, Stelios Mavromatidis, Bernhard Ager and Xenofontas
Dimitropoulos, “Visualizing big network traffic data using frequent
pattern mining and hypergraphs,” Computing Vol. 96(1), Springer, pp.
27-38, 2014.

[23] Risto Vaarandi, “Simple Event Correlator for real-time security log
monitoring,” Hakin9 Magazine 1/2006 (6), pp. 28-39, 2006.

