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Abstract—Today, event logging is a widely accepted concept 

with a number of event formatting standards and event collection 

protocols. Event logs contain valuable information not only about 

system faults and performance issues, but also about security 

incidents. Unfortunately, since modern data centers and 

computer networks are known to produce large volumes of log 

data, the manual review of collected data is beyond human 

capabilities. For automating this task, a number of data mining 

algorithms and tools have been suggested in recent research 

papers. In this paper, we will describe the application of the 

LogCluster tool for mining event patterns and anomalous events 

from security and system logs. 

Keywords—security log analysis; event log clustering; pattern 

mining from event logs; data mining 

I. INTRODUCTION 

Nowadays, event logging is supported by most 
applications, services, network devices, and other IT system 
components. Well-known standards exist for event logging 
(such as BSD syslog [1] and IETF syslog [2]) and widely used 
solutions have been developed for event log collection (such as 
rsyslog [3], syslog-ng [4], and Elastic Stack [5]). Event logs 
contain valuable information about security incidents, but since 
large volumes of log data are generated in modern data centers 
and computer networks [6], the manual review of event logs is 
infeasible. In order to aid the human analyst, a number of data 
mining algorithms and tools have been proposed [7–22]. Many 
suggested approaches are semi-automated, allowing for 
interactive discovery of event patterns from event logs. This 
knowledge can be used for various purposes like handling 
security incidents and developing event correlation rules [23]. 
During the last decade, data clustering algorithms have been 
often suggested for mining line patterns from textual event 
logs. Proposed algorithms assume that each line in the event 
log is a complete representation of some event. The algorithms 
divide the lines into clusters, so that lines from the same cluster 
are similar and matching the same line pattern. Instead of 
printing lines in each cluster, the algorithms output a line 
pattern for each cluster to the end user. Also, lines that do not 
fit into any of the detected clusters are arranged into a special 
cluster of outliers and reported individually. Due to their 
nature, clustering algorithms are able to identify not only event 
patterns that reflect regularities, but also unusual outlier events 
that deserve closer attention from security personnel. 

In this paper, we describe the LogCluster tool for mining 
textual event logs and present example scenarios of detecting 

security incidents and anomalous events. Full details of the 
clustering algorithm implemented by the tool have been given 
in our recent paper [7]. The remainder of this paper is 
organized as follows – section II reviews related work, section 
III describes the LogCluster tool and focuses on its newly 
developed functionality along with several use cases, while 
section IV concludes the paper and provides the download and 
licensing information for the LogCluster tool. 

II. RELATED WORK 

One of the earliest event log clustering algorithms is SLCT 
[8] which has been applied in various domains like IDS alarm 
log processing [9, 10], detection of recurrent fault conditions 
[11, 12], and visualization of event log data [19, 20]. SLCT 
takes support threshold s as a user-given input parameter, and 
starts the clustering process by identifying frequent words that 
appear in s or more event log lines. The words are considered 
with positional information, e.g., if the fifth word of the event 
log line is kernel, it is treated as a tuple (kernel, 5). After 
identifying frequent words, another pass is made over input 
data for assigning lines to cluster candidates. For each line, all 
frequent words are extracted, and the candidate for this line is 
identified by the set of extracted words. After the data pass, 
frequent candidates that contain s or more lines are selected as 
clusters. The number of lines in a cluster (or a candidate) is 
called the support of the cluster (or the candidate). For 
example, consider the event log with four lines:  

User bob login from 10.0.0.1 

User alice login from 10.0.0.1 

User jim login from 10.0.0.2 

User Srv Admin login from 10.0.0.3 

If s=3, the words (User, 1), (login, 3), and (from, 4) are 
detected as frequent. Also, two candidates are identified – the 
candidate {(User, 1), (login, 3), (from, 4)} with support 3 that 
contains first three lines, and the candidate {(User, 1)} with 
support 1 that contains the last line. The first candidate is 
selected as a cluster and is reported as the line pattern User * 
login from (since the cluster has no word associated with 
position 2, a wildcard is printed for this position). Finally, the 
last line is reported as an outlier. 

Unfortunately, SLCT is known to suffer from some 
shortcomings [9, 12, 13]. Firstly, it does not detect wildcard 
suffixes for line patterns as illustrated by the previous example. 
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Secondly, SLCT is sensitive to word delimiter noise and shifts 
in word positions. For instance, in the above example the last 
event log line is not assigned to the cluster represented by the 
pattern User * login from. Finally, when mining is conducted 
with lower support thresholds, SLCT is prone to overfitting – 
clusters with meaningful line patterns could be needlessly split, 
so that resulting clusters have too specific line patterns. For 
example, if s=2 for the above event log example, only the 
pattern User * login from 10.0.0.1 is detected which does not 
represent the general case. 

Recently, we have developed a clustering algorithm called 
LogCluster that addresses the shortcomings of SLCT [7]. 
Similarly to SLCT, the user must supply the support threshold 
s to LogCluster which is used for finding frequent words 
during the first pass over the event log. However, positional 
information is not encoded into words. In order to identify a 
cluster candidate for each event log line during the second data 
pass, LogCluster extracts all frequent words from the line and 
arranges them into a tuple. Also, summary information about 
infrequent words in all assigned lines is maintained with each 
candidate. Candidates containing s or more lines are selected as 
clusters and reported as line patterns, while lines without a 
cluster are regarded outliers and reported during an optional 
data pass. For instance, if s=3 for the example event log above, 
all lines are assigned to the cluster identified by the tuple 
(User, login, from), and the line pattern User *{1,2} login from 
*{1,1} is reported for this cluster together with its support of 4. 

Reidemeister et al developed a methodology for diagnosing 
recurrent faults in software systems which employs a modified 
version of SLCT for software logs [11, 12]. In order to handle 
delimiter noise and shifts in word positions, results from SLCT 
are clustered further with a single-linkage clustering algorithm 
that uses a Levenshtein distance function. Detected knowledge 
is then harnessed for building decision tree classifiers. 

Makanju developed a divisive clustering algorithm IPLoM 
that starts with the event log as a single cluster and splits it into 
partitions during three steps [13]. Splitting is based on various 
criteria, such as the number of words in event log lines and 
associations between word pairs. After splitting, a line pattern 
is derived for each partition. Unlike SLCT, IPLoM is able to 
identify wildcard suffixes for line patterns. 

Apart from clustering algorithms, frequent itemset mining 
methods have been often employed for event log mining. 
LogHound is a generalization of the Apriori algorithm that can 
discover line patterns from textual event logs [9]. Other 
frequent itemset mining approaches have been mainly used for 
the detection of temporal associations between event types 
[14–18] and for mining NetFlow traffic patterns [21, 22]. 

III. THE LOGCLUSTER TOOL 

The LogCluster tool is an open-source Perl-based UNIX 
command line utility. It is able to mine meaningful patterns 
from large event logs, and our recent study provides detailed 
performance data for the 0.01 version [7]. In this section, we 
will review the features of the latest version and discuss several 
use cases. Event logs presented in this section originate from 
several large and mid-size private and military organizations, 
with all sensitive data being obfuscated in Fig. 1–4. 

A. Introduction and Basic Use 

All parameters are supplied to the LogCluster tool with 
command line options. For example, the following command 
line 

logcluster.pl --support=100 --input=/var/log/messages 

mines line patterns from /var/log/messages with support 
threshold 100. Default word delimiter is whitespace, but 
custom delimiter can be defined with the --separator command 
line option. In order to mine patterns from several log files, 
multiple --input options can be provided and wildcards can be 
used in file names (e.g., --input=/var/log/*.log). The above 
command line runs the basic variant of the LogCluster 
algorithm which involves two passes over /var/log/messages 
for finding frequent words and cluster candidates respectively. 

 

logcluster.pl --input=suricata.log –-support=1000 \ 

              --wsize=10000 --csize=10000 

 

Feb 27 *{1,1} myhost suricata[17447]: [1:2012708:2]  

ET WEB_SERVER HTTP 414 Request URI Too Large  

[Classification: Web Application Attack]  

[Priority: 1] {TCP} 10.0.19.12:80 -> *{1,1} 

Support: 44744 

 

Feb 5 *{1,1} myhost suricata[2223]: [1:2006445:13]  

ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM  

[Classification: Web Application Attack]  

[Priority: 1] {TCP} *{1,1} -> 10.0.33.7:80 

Support: 39692 

 

Oct 18 *{1,1} myhost suricata[18941]: [1:2006446:11]  

ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT  

[Classification: Web Application Attack]  

[Priority: 1] {TCP} *{1,1} -> 10.0.3.5:80 

Support: 7493 

 

Mar 15 *{1,1} myhost suricata[25554]: [1:2016936:2]  

ET WEB_SERVER SQL Injection Local File Access Attempt  

Using LOAD_FILE [Classification: Web Application Attack]  

[Priority: 1] {TCP} *{1,1} -> 10.0.6.1:80 

Support: 3293 

 

Jan 2 *{1,1} myhost suricata[30119]: [1:2101201:10]  

GPL WEB_SERVER 403 Forbidden [Classification: Attempted  

Information Leak] [Priority: 2] {TCP} 10.0.3.9:80 -> *{1,1} 

Support: 2826 

… 

 

Fig. 1. Sample Suricata IDS alarm patterns. 

When mining larger log files, the number of distinct words 
can be quite large, and with lower support thresholds many 
cluster candidates could be generated. Therefore, it is 
expensive to keep all words and cluster candidates in memory 
when their occurrence counts are established. In order to 
reduce the memory consumption by filtering out infrequent 
words, a sketch based technique can be employed which 
requires an extra data pass. During the data pass, the word 
sketch of m counters is created, where each counter reflects the 
occurrence counts of many words and acts as a filter (see [7] 
for full details). A similar method can be used for filtering out 
infrequent candidates. The number of counters in the word 
sketch is set with the --wsize command line option, while the 
size of the candidate sketch can be set with the --csize option.  

Fig. 1 illustrates example line patterns detected by the 
LogCluster tool from the Suricata IDS log file. The log file 
covered the period of 6 months and contained 949,920 lines. 



Since the support threshold was set to 1000, strong alarm 
patterns were identified which reflect the days when intensive 
attacks against specific hosts were conducted. During the 
mining process, the word and candidate sketches of 10,000 
counters were employed. Both sketches involved an additional 
data pass, and the memory consumption of the LogCluster tool 
was reduced from 406.2 MB to 13.4 MB. 

B. Preprocessing Input 

While Fig. 1 provides an example of discovering relevant 
patterns from a raw log file, quite often the detection of 
meaningful patterns requires elaborate preprocessing of event 
logs (e.g., dropping irrelevant events, removal of timestamps, 
and rewriting specific parts of event log lines). In many cases, 
such tasks require dedicated scripts that store preprocessed log 
data to disk. For avoiding this overhead, the LogCluster tool 
provides native support for flexible input preprocessing. If a 
regular expression is supplied with the --lfilter option, only the 
lines matching this regular expression are clustered. Also, if the 
regular expression sets match variables, the variables can be 
used in the format string defined with the --template option, in 
order to convert matching event log lines in memory before 
further processing. Fig. 2 depicts a LogCluster application 
example for SSH daemon syslog events where timestamp, 
hostname, and program name were discarded during clustering 
(for instance, the event log line Mar 27 12:01:33 server113 
sshd[15437]: test message was converted to test message). The 
authpriv.log file contained over 7 million lines from hundreds 
of UNIX servers, while 98,920 lines matched the --lfilter 
option and were converted. The mining was conducted with the 
relative support threshold of 1% (that means setting support 
threshold to 1% of the number of clustered lines, i.e., 989). 
Also, 2200 outlier event log lines were detected and written to 
the outliers.log file. Most outliers reflected SSH probing of 
non-existing user accounts by the organizational vulnerability 
scanning engine, but some outliers were also error messages 
that manifested system faults and configuration errors. 

In some cases, regular expression based filtering and 
conversion might not be sufficient for complex preprocessing 
tasks. For addressing this issue, the LogCluster tool also 
supports the --lcfunc option which takes a definition of an 
anonymous Perl function for its value. The function is 
compiled when LogCluster starts, and the compiled code is 
invoked for filtering and converting each event log line. An 
event log line is passed to the function as its only input 
parameter, and in order to indicate the line should not be 
considered during clustering, Perl undef value must be returned 
from the function. If any other value is returned, it replaces the 
original event log line. For example, if the option  

--lcfunc=’sub { if ($_[0] =~ s/192\.168\.\d{1,3}\.\d{1,3}/ip-
192.168/g) { return $_[0]; } return undef; }’  

is employed, LogCluster only considers lines which contain 
IP addresses from the 192.168.0.0/16 network, and each such 
address is replaced with the string ip-192.168. Finally, since 
providing longer Perl functions in command line is not 
convenient, input preprocessing routines can be defined in a 
separate Perl module and used through the --lcfunc interface. 
For example, if the option  

--lcfunc=’require “/opt/logcluster/perlmod/Test.pm”; sub { 
Test::lineconvert($_[0]); }’  

is provided, the function lineconvert() from the module 
/opt/logcluster/perlmod/Test.pm is invoked for filtering and 
converting each event log line. 

 

logcluster.pl --input=authpriv.log --rsupport=1 --aggrsup \ 

--lfilter='sshd\[\d+\]: (?<msgtext>.+)' --template='$+{msgtext}' \ 

--outliers=outliers.log 

 

pam_unix(sshd:session): session opened for user *{1,1} by (uid=0) 

Support: 26708 

 

Accepted publickey for *{1,1} from *{1,1} port *{1,1} ssh2 

Support: 24160 

 

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0  

tty=ssh ruser= *{1,2} 

Support: 1362 

… 

 

# examples of outlier events from outliers.log 

 

Mar 18 04:43:43 server112 sshd[22902]: Failed password for  

  invalid user emailswitch from 10.31.97.21 port 46668 ssh2 

Mar 18 04:43:50 server112 sshd[22936]: Failed password for  

  invalid user admin from 10.31.97.21 port 46686 ssh2 

Mar 18 04:44:06 server112 sshd[23000]: Failed password for  

  invalid user manage from 10.31.97.21 port 46726 ssh2 

Mar 18 04:44:53 server112 sshd[23056]: Failed password for  

  invalid user cisco from 10.31.97.21 port 46841 ssh2 

Mar 18 06:31:38 server29 sshd[12133]: PAM unable to dlopen 

  (/lib64/security/pam_oddjob_mkhomedir.so):  

  /lib64/security/pam_oddjob_mkhomedir.so: cannot open shared  

  object file: No such file or directory 

 

Fig. 2. Sample SSH daemon event patterns and outlier events. 

C. Defining Word Classes 

In many cases, infrequent words share the same format that 
is not detected during clustering. For example, the program 
name of syslog messages is often followed by frequently 
changing process ID, creating many infrequent words for the 
same program (e.g., sshd[18991]: and sshd[7655]:). For 
discovering such regularities, LogCluster supports the creation 
of word classes according to user-defined rules, where each 
word class represents many infrequent words and captures their 
commonalities. If a regular expression is given with 
the --wfilter option, word classes are set up for all words that 
match this expression. Word class creation involves searching 
the word for all substrings that match the regular expression 
supplied with the --wsearch option, and replacing these 
substrings with the string provided with the --wreplace option. 
For example, with the following command line options  

--wfilter=’^\w+\[\d+\]:$’ --wsearch=’\[\d+\]’ --wreplace=
’[PID]’  

the word class sshd[PID]: is created for words sshd[1321]: 
and sshd[9583]:, while the word class suricata[PID]: is set up 
for words suricata[2133]: and suricata[17743]:. Word classes 
are treated like regular words by LogCluster. If a word class is 
frequent, it replaces all corresponding infrequent words during 
the clustering process. 

The LogCluster tool also features a more powerful --wcfunc 
option which allows for the creation of word classes with a 
user-defined Perl function. Unlike with regular expression 



based options, multiple word classes can be created for a word, 
and the classes are returned from the function as a Perl list. The 
order of word classes in the list defines their priority – if the 
word is infrequent, the first frequent word class from the list 
replaces the word. For example, if the  

--wcfunc=’sub { if ($_[0] =~ /^Chrome\/(\d+)/) { return 
("Chrome/$1", "Chrome"); } }’  

option is provided, word classes Chrome/49 and Chrome 
are created for the word Chrome/49.0.2623.87, with 
Chrome/49 having precedence over Chrome. If the word class 
Chrome/49 and the word Chrome/49.0.2623.87 are infrequent, 
then word class Chrome replaces Chrome/49.0.2623.87 during 
the clustering process. As with the --lcfunc option described in 
the previous subsection, more complex word class creation 
routines can be separated into Perl modules (the LogCluster 
distribution includes one such example module). 

D. Joining Clusters 

As discussed in section II, clusters can be split needlessly 
with lower support thresholds. As a result, instead of generic 
meaningful line patterns too specific patterns are detected. For 
addressing the overfitting problem, LogCluster supports two 
heuristics for joining clusters that make resulting line patterns 
more comprehensible to the human analyst. The first heuristic 
is enabled with the --aggrsup option and is applied to cluster 
candidates before clusters are selected. The heuristic allows 
cluster overlaps, in order to increase the support of clusters 
with more generic patterns – for each cluster candidate, other 
candidates with more specific line patterns are identified, and 
their lines are also assigned to the given candidate. For 
instance, if there are two candidates with line patterns Interface 
*{1,1} down and Interface eth0 down, lines of the second 
candidate are also assigned to the first candidate, and the 
support of the first candidate is incremented by the support of 
the second candidate. The use of the --aggrsup option has been 
illustrated in Fig. 2. 

The second heuristic is applied after clusters have been 
selected from candidates. The heuristic relies on word weight 
functions that are described below. Suppose that a and b are 
frequent words, m denotes the number of event log lines where 
a appears, and n denotes the number of event log lines where 
both a and b appear. Provided that n > 0 (i.e., there is at least 
one event log line where both a and b are present), dependency 
from a to b is defined as:  

dep(a, b) = n / m 

Note that dep(a, a) = 1 and 0 < dep(a, b) ≤ 1, with higher 
value of dep(a, b) indicating higher likelihood of observing b 
when a is present. For measuring how strongly each word in 
the line pattern is correlated to other words in this pattern, 
LogCluster defines several word weight functions which return 
values from 0 to 1. If w1,…,wk are words in the line pattern, the 
word weight function f1 is defined as:  

f1(wi) =  j
k
=1 dep(wj, wi) / k 

The smaller the value of f1(wi), the less likely it is to 
observe wi with other words of the pattern. For identifying 
words with insufficient weights in line patterns, the word 

weight threshold is defined with the --wweight option. For 
example, if --wweight=0.5 while dep(Interface, eth0) = 0.07 
and dep(down, eth0) = 0.07, then the word eth0 has insufficient 
weight in the pattern Interface eth0 down, since f1(eth0) = (0.07 
+ 0.07 + 1) / 3 = 0.38. The cluster joining heuristic replaces 
such words with special tokens in cluster identifier tuples, and 
joins two clusters if their modified tuples are identical. Then a 
new line pattern is derived for the joint cluster by creating lists 
from words with insufficient weights and joining wildcards 
(see [7] for full details). For instance, suppose there are two 
clusters with identifier tuples (Interface, eth0, down) and 
(Interface, eth1, down), and line patterns Interface eth0 down 
and Interface eth1 down. If words eth0 and eth1 have 
insufficient weights in their respective patterns, modified 
identifier tuples for both clusters are (Interface, TOKEN, 
down), and two clusters are thus joined into a new cluster with 
the line pattern Interface (eth0|eth1) down. Since overfitting 
introduces words with lower weights into patterns, the cluster 
joining heuristic helps to reduce the number of such patterns by 
joining them into more meaningful patterns which are built 
around strongly associated words.  

The f1 word weight function has some drawbacks that have 
motivated the development of additional functions in recent 
versions of LogCluster. Firstly, if k is the number of words in 
the pattern, then 1/k ≤ f1(wi) ≤ 1, since dep(wi, wi) = 1 (i.e., f1 
allows the word to contribute 1/k to its own weight). Therefore, 
if a pattern has few words, its words will be assigned higher 
weights than words of longer patterns. This bias becomes more 
noticeable if the same word appears several times in the 
pattern, for example, interface *{1,1} down: interface *{1,2} 
fault. The word weight function f2 addresses this shortcoming 
by first identifying the set of unique words U for the pattern. 
For instance, for the previous example pattern U = {interface, 
down:, fault}. If U contains p words (i.e., p = |U|), f2 is defined 
as follows:  

f2(w) = ((  vU dep(v, w) ) – 1) / (p – 1),   if p > 1 

f2(w) = 1,   if p = 1 

For example, if dep(Interface, eth0) = 0.07 and dep(down, 
eth0) = 0.07, then f1(eth0) = 0.38 for line pattern Interface eth0 
down, while f2(eth0) = (0.07 + 0.07 + 1 - 1) / 2 = 0.07. By not 
allowing the word to contribute to its own weight, f2 calculates 
word weights in a fair way for shorter patterns. 

One shortcoming of f1 and f2 weight functions is their 
inability to assign higher weights to groups of strongly 
associated words. For instance, suppose the line pattern is 
kernel: interface *{1,1} down, and the words interface and 
down always appear together (i.e., dep(interface, down) = 
dep(down, interface) = 1). Also, suppose the word kernel: is 
always present when words interface and down appear (i.e., 
dep(interface, kernel:) = dep(down, kernel:) = 1), while only 
4% of event log lines that contain kernel: also contain the 
words interface and down (i.e., dep(kernel:, interface) = 
dep(kernel:, down) = 0.04). Thus, f1(kernel:) = 1 and 
f1(interface) = f1(down) = 0.68, although word weights should 
be distributed more evenly in this pattern, considering that 
words interface and down form a very strong sub-pattern. For 
achieving this purpose, the mutual dependency between 
frequent words a and b is defined as:  



mdep(a, b) = (dep(a, b) + dep(b, a)) / 2 

Note that mdep(a, b) = mdep(b, a) and 0 < mdep(a, b) ≤ 1. 
Also, high values of mdep(a, b) indicate that words a and b 
usually appear together, while low values reflect the lack of 
such strong association. If w1,…,wk are words in the line 
pattern, the word weight function f3 is defined as:  

f3(wi) =  j
k
=1 mdep(wj, wi) / k 

Like the f2 function, the word weight function f4 employs 
the set of unique words U for the pattern, and is defined as 
follows (note that p = |U|): 

f4(w) = ((  vU mdep(v, w) ) – 1) / (p – 1),   if p > 1 

f4(w) = 1,   if p = 1 

For instance, in the case of the previous line pattern 
example mdep(interface, down) = (1 + 1) / 2 = 1, mdep(kernel:, 
interface) = (0.04 + 1) / 2 = 0.52, and mdep(kernel:, down) = 
(0.04 + 1) / 2 = 0.52. Therefore, f3(kernel:) = (1 + 0.52 + 0.52) / 
3 = 0.68, while f3(interface) = (0.52 + 1 + 1) / 3 = 0.84 and 
f3(down) = (0.52 + 1 + 1) / 3 = 0.84. In other words, compared 
to f1, the f3 function assigns more weight to words interface and 
down due to their strong association. 

The LogCluster tool allows for choosing the weight 
function with the --weightf option, e.g., --weightf=3 selects the 
f3 function. Also, the --color option highlights words with 
insufficient weights in reported line patterns. Finally, detected 
cluster and word dependency information can be stored to the 
dump file given with the --writedump option. The data from 
previously created dump file can be loaded with 
the --readdump option during further runs of LogCluster. This 
is useful for quick evaluation of different word weight 
thresholds and functions without repeating the full clustering 
process that is computationally expensive. For example, the 
following command line 

logcluster.pl --readdump=cluster.dump  --wweight=0.75 

loads the cluster and word dependency data from dump file 
cluster.dump, and joins clusters with the word weight threshold 
0.75 and word weight function f1 (the default function). 

E. Case Studies 

This subsection presents some log analysis scenarios that 
utilize previously described features of the LogCluster tool. 
Fig. 3 provides an example of employing LogCluster in a mid-
size private organization, in order to create daily e-mail reports 
from syslog events of critical servers. Nearly 12 million events 
are collected each day with 150-300 detected line patterns. For 
producing more meaningful patterns, word classes are created 
for words which contain punctuation marks by replacing 
letters, digits, and other non-punctuation characters with 
character X. Replacement is not done if non-punctuation 
characters are followed by [ or = character, in order to preserve 
keywords and program names which precede these characters 
(e.g., word class to=<X@X.X> is created for the word 
to=<user@example.com>). Also, the word weight threshold 
0.5 and word weight function f2 are used for joining clusters. 
The results of the clustering are written into the 
/tmp/logcluster-rotate.dmp dump file, in order to facilitate 

quick additional analysis with different word weight thresholds 
and functions. Fig. 3 also depicts some example patterns 
detected with the LogCluster tool. The first pattern in Fig. 3 
manifests an attempt to use the organizational DNS server for 
conducting DNS reflection and amplification attacks. The 
second pattern represents SSH account probing from several 
Internet hosts against a number of servers and routers of the 
organization. Remaining patterns reflect various attempts to 
distribute spam through the organizational mail server. 

 

logcluster.pl --input=/var/log/all.log --rsupport=0.01 \  

--wfilter=’[[:punct:]]’ --wsearch=’[ˆ[:punct:]]++(?![[=])’ \ 

--wreplace=X --writedump=/tmp/logcluster-rotate.dmp \ 

--wweight=0.5 --weightf=2 --csize=100000 --wsize=100000 

 

Mar 29 X:X:X nameserver2 named[10307]: security: info: client  

(X.X.X.X#X:|10.0.137.69#25345:) view authoritative: query (cache)  

(’X.X.X.X.X.X/X/X’|’X.X.X.X/X/X’|’X.X.X.X.X/X/X’|’domain.nu/MX/IN’ 

|’isc.org/ANY/IN’) denied 

Support: 198152 

 

Mar 29 X:X:X (backupserver|vps1|nameserver1|router1|vps2|router2 

|mailserver|logserver|vps3|vps4) sshd[X]: pam_unix(sshd:auth): 

authentication failure; logname= uid=0 euid=0 tty=ssh ruser=  

(rhost=10.3.202.120|rhost=10.88.177.98) user=root 

Support: 18112 

 

Mar 26 X:X:X mailserver X/smtpd[X]: NOQUEUE: reject: RCPT from  

exch001.example.com[10.52.134.35]: 454 4.7.1 <user@example.com>: 

Relay access denied; from=<> to=<user@example.com> proto=ESMTP 

helo=<webmail.example.com> 

Support: 941 

 

Mar 17 X:X:X mailserver X/smtpd[X]: warning: hostname  

host94165.example.com does not resolve to address X.X.X.X 

Support: 1217 

 

Mar 9 X:X:X mailserver X/smtpd[X]: NOQUEUE: reject: RCPT from  

unknown[X.X.X.X]: 554 5.7.1 Service unavailable; Client host  

[X.X.X.X] blocked using cbl.abuseat.org;  

Blocked - see X://X.X.X/X.X?ip=X.X.X.X; from=<X@X.X> to=<X@X.X>  

proto=ESMTP *{1,1} 

Support: 1219 

… 

 

Fig. 3. Sample attack patterns detected from syslog events. 

In some cases, it might not be convenient to cluster the 
event log with one LogCluster run, since higher support 
threshold might yield too many outliers, while with lower 
support threshold a large number of clusters might be 
produced. This problem often appears for event logs which 
contain events from many servers and programs, and feature 
meaningful line patterns with a wide variety of supports. For 
addressing this problem, LogCluster can be used iteratively, 
clustering results from previous execution(s) at each step. Fig. 
4 provides an example of iterative clustering of the mail.log 
file which contained syslog messages with mail facility from a 
number of mail servers. During the first iteration with relative 
support threshold 0.1%, each event log line was converted to a 
program name string, so that detected line patterns indicated 
programs that have produced most log messages in mail.log. A 
cluster for the sendmail daemon was discovered, and during 
the second iteration with relative support threshold 0.1% it was 
split into smaller clusters by analyzing the message text after 
the program name. The second iteration yielded 268 patterns 
that reflected normal system activity and 10,264 outliers. The 
outliers were clustered further with support threshold 50. As a 
result, 105 patterns and 2018 outliers were detected, with many 



patterns and outliers representing error conditions and 
abnormal events such as connection attempts from spammers. 

 

logcluster.pl --input=mail.log --rsupport=0.1 \ 

--lfilter=' ([\w\/.-]+)\[\d+\]: ' --template='$1[PID]:' 

 

sendmail[PID]: 

Support: 1007754 

… 

 

logcluster.pl --input=mail.log –rsupport=0.1 --aggrsup \ 

--lfilter='sendmail\[\d+\]: (.+)' --template='$1' \ 

--separator='(?:\s+|=)' --outliers=outliers.log  

 

*{1,1} from *{1,5} size *{1,1} class 0, nrcpts 1, msgid *{1,5}  

proto ESMTP, daemon MTA, relay *{1,5} 

Support: 161976 

 

STARTTLS client, relay *{1,1} version TLSv1/SSLv3, verify OK,  

cipher AES128-SHA, bits 128/128 

Support: 71062 

… 

 

logcluster.pl --input=outliers.log --support=50 --aggrsup \ 

--lfilter 'sendmail\[\d+\]: (.+)' --template '$1' \ 

--separator='(?:\s+|=)' --outliers=outliers2.log 

 

*{1,1} ruleset check_rcpt, arg1 *{1,1} relay *{1,2} reject 550  

5.1.1 *{1,1} User unknown 

Support: 441 

 

*{1,1} SYSERR(root): collect: I/O error on connection from *{1,1}  

from *{1,2} 

Support: 104 

… 

 

# examples of outlier events from outliers2.log 

 

Mar 29 03:51:28 mailserver sendmail[30101]: ruleset=check_relay,  

  arg1=box.example.com, arg2=127.0.0.1, reject=550 5.7.1  

  Rejected: 10.193.172.92 listed at xbl.spamhaus.org 

Mar 29 08:28:07 mailserver sendmail[6276]: XXX: mail.example.com  

  [10.109.254.117]: Possible SMTP RCPT flood, throttling. 

Mar 29 10:23:58 mailserver sendmail[22746]: XXX:  

  ruleset=check_mail, arg1=<pzfsibdlkj@sjfqc.biz>,  

  relay=[10.240.79.7], reject=553 5.1.8 <pzfsibdlkj@sjfqc.biz>...  

  Domain of sender address pzfsibdlkj@sjfqc.biz does not exist 

 

Fig. 4. Iterative analysis of mail server events. 

IV. CONCLUSION 

In this paper, we have presented the LogCluster tool for 
mining line patterns and outlier events from textual event logs. 
We have also described several scenarios of discovering 
security incidents and anomalous events with this tool. For a 
more detailed information on its performance and comparison 
with other log clustering algorithms, the reader is referred to 
our recent paper [7].  

For the future work, we plan to harness the LogCluster tool 
for insider threat detection and to modify the LogCluster 
algorithm for stream mining purposes. The LogCluster tool has 
been released under the terms of GNU GPLv2 and is available 
from http://ristov.github.io/logcluster. 
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