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Resilience of Cyber-
Physical Systems: an 
Experimental Appraisal 
of Quantitative 
Measures

Abstract: Cyber-Physical Systems (CPSs) interconnect the physical world with digital 
computers and networks in order to automate production and distribution processes. 
Nowadays, most CPSs do not work in isolation, but their digital part is connected to 
the Internet in order to enable remote monitoring, control and configuration. Such 
a connection may offer entry-points enabling attackers to gain control silently and 
exploit access to the physical world at the right time to cause service disruption 
and possibly damage to the surrounding environment. Prevention and monitoring 
measures can reduce the risk brought by cyber attacks, but the residual risk can still 
be unacceptably high in critical infrastructures or services. Resilience – i.e., the ability 
of a system to withstand adverse events while maintaining an acceptable functionality 
– is therefore a key property for such systems. In our research, we seek a model-
free, quantitative, and general-purpose evaluation methodology to extract resilience 
indexes from, e.g., system logs and process data. While a number of resilience metrics 
have already been put forward, little experimental evidence is available when it comes 
to the cyber security of CPSs. By using the model of a real wastewater treatment 
plant, and simulating attacks that tamper with a critical feedback control loop, we 
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1. Introduction

A cyber-physical system (CPS) intertwines physical processes, hardware, software, 
and communication networks [1]. Examples of CPSs include water treatment plants, 
power plants and distribution networks, industrial plants, transportation vehicles, 
and smart buildings. The number of security incidents affecting CPSs has been 
steadily increasing over the past few years – see, e.g., [2]. The bottom line is that 
CPSs connected to the Internet can be the root cause of disruption in services, damage 
to equipment or severe impairment of human activities. Malicious acts most often 
exploit the weakness of the “red dot” representing the virtual place of convergence 
between Information Technology (IT) and Operation Technology (OT): exploitation 
of the former provides attack vectors, while exploitation of the latter makes kinetic 
impacts possible. Detecting weaknesses, fixing them and monitoring critical events in 
CPSs are compelling and heavily investigated matters, but we must also acknowledge 
that, in spite of all the efforts made to secure CPSs, interconnected systems may never 
be fully secure. 

In this scenario, the concept of resilience emerges as an additional target, 
complementary to prevention and protection from attacks, but no less important. 
This line of thought is pervasive in the Presidential Policy Directive 21 [3] about 
the security of critical infrastructure, which defines resilience as “[…] the ability to 
[…] withstand and recover rapidly from disruptions. Resilience includes the ability 
to withstand and recover from deliberate attacks, accidents, or naturally occurring 
threats or incidents”. More recently, the term cyber resilience has been coined to 
identify specifically “the ability to continuously deliver the intended outcome despite 
adverse cyber events” [4], and this is the interpretation to which we adhere in the 
following. More specifically, we believe that stakeholders like CERTs (Computer 

provide a comparison between four resilience indexes selected through a thorough 
literature review involving over 40 papers. Our results show that the selected indexes 
differ in terms of behavior and sensitivity with respect to specific attacks, but they 
can all summarize and extract meaningful information from bulky system logs. Our 
evaluation includes an approach for extracting performance indicators from observed 
variables which does not require knowledge of system dynamics; and a discussion 
about combining resilience indexes into a single system-wide measure is included.
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Emergency Response Teams), management authorities, regulators, and local and 
national government branches could be interested in a resilience evaluation framework 
possessing the following properties:

•	 Model-free. Accurate mathematical models of real-world scale CPSs are 
very difficult to obtain and maintain. Therefore, the assessment of resilience 
should not require a detailed description of the system dynamics, e.g., in 
the form of system equations or other formal models, but rather it should be 
possible to rely on monitored process data and events only.

•	 Quantitative. A synthetic measure (or index) must be provided that describes 
as faithfully as possible the amount of damage that a system can tolerate 
before becoming unstable or irreversibly damaged, or before exhibiting 
potentially dangerous behaviors.

•	 General-purpose. The way in which the resilience index is computed, 
starting from performance indicators, should be applicable, in principle, to 
as wide a class of systems as possible, in order to achieve economy of scale 
in the deployment of the framework.

We propose an evaluation methodology that fulfills all the requirements cited above 
to extract resilience indexes from, e.g., system logs, control process data, and SIEM 
(Security Information and Event Management) tool logs. While several proposals 
exist in the literature, many of them do not meet the requirements we seek and, for 
those that do, little or no experimental evidence about their adequacy to account for 
resilience against cyber attacks is available. In order to start bridging this gap, out of 
a literature analysis consisting of 47 research papers and surveys, we selected four 
indexes that can be applied to quantify resilience independently from system dynamics 
and structure. Using the model of a real wastewater treatment plant, and simulating 
attacks that tamper with a critical feedback control loop inside the plant, we compare 
the indexes considering different attack hypotheses on a daily basis using Monte 
Carlo simulations. The computation of the indexes is oblivious of specific features of 
the system, but critically depends on the selection of performance indicators to extract 
system performances out of the evolution of monitored data. Our results show that the 
distributions of the selected indexes across the simulation of different attacks differ 
in terms of behavior and sensitivity, but they all extract meaningful information from 
bulky system logs. 

To sum up, the main contributions of the paper are:

•	 Comparison of four resilience indexes obtained from a thorough literature 
analysis involving over 40 research papers, in order to ensure model freedom 
and generality.
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•	 An approach that does not require a mathematical model of system dynamics 
to extract performance indicators from observed variables.

•	 A discussion and a proposal about combining resilience indexes obtained 
from several process variables into a single system-wide measure.

The rest of the paper is structured as follows. In Section 2, we introduce the basic 
terminology. We succinctly review the related literature and we introduce the indexes 
we selected for evaluation, including some of the motivation behind their choice. 
In Section 3, we introduce our wastewater treatment facility case study and we 
describe the model that we devised in Matlab/Simulink® including its simulation 
under attack-free conditions. In Section 4, we describe the experimental models, 
including attack modalities, extraction of performance indicators and a discussion 
about the combination of resilience indexes. In Section 5, we present some results 
related to the case study according to the experimental setup described in Section 4. A 
brief discussion of the results is contained in Section 6, and we conclude the paper in 
Section 7 with some final remarks.

FIGURE 1: GENERIC RESILIENCE EVALUATION SCENARIO (LEFT) FOCUSING ON THE DIFFERENCE 
BETWEEN BASELINE PERFORMANCE BP(T) AND AFTER-IMPACT PERFORMANCE AP(T) OVER A 
CONTROL PERIOD T. GENERIC RESILIENCE EVALUATION SCENARIO (RIGHT) FOCUSING ON THE 
MAXIMUM AND AVOIDED PERFORMANCE DROPS DURING THE ADVERSE EVENT. NOTATION AND 
PICTURES FROM [5].

2. Background and related work

The definitions and notation that we use are mostly borrowed from [5]. The plot 
in Figure 1 (left) is presented to describe a generic resilience evaluation scenario. 
The coordinates are time (x-axis) and performance (y-axis), BP(t) is the Baseline 
Performance and represents the performance of the system under normal conditions, 
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whereas AP(t) is the After-impact Performance and represents the performance of 
the system after the impact of some disruptive event. Such an event is assumed to 
happen at time td (disruption time) and end at time tn (return to normality time), where 
T= tn-td is defined as the control period in [5]. A further point of interest is tv (lowest 
performances time) where the system reaches the minimum level of performance after 
disruption. The period T* is defined as the observation period and the condition T*>T 
holds. The plot in Figure 1 (right) introduces the notion of maximum performance 
drop (Max drop) and avoided performance drop (Avoided drop) which represent, 
respectively, how much performance can be lost before the system ceases to be 
functional and how much performance is left when the system reaches the minimum 
level of functionality after the attack and before the recovery. With reference to Figure 
1 (left), the first resilience index that we consider is introduced by [6] and is defined as

The index 𝜓A considers the area of the curve AP(t) normalized over the control period 
T, i.e., the residual normalized performance of the system during the disruption. 
Clearly, the higher the value, the closer to normal operating conditions, and the greater 
the resilience of the system. The advantage of this index is that it does not require 
establishing a baseline and it can be readily applied to any performance indicator 
computed on process data. The main disadvantage is that it assumes knowledge of the 
control period which, in the majority of cyber attacks, is not known and is difficult to 
estimate. 

An index that overcomes such limitations, but that does require the establishment of a 
baseline performance, is introduced by [7], [8] and [9]. It is defined as

This index is the ratio of the areas enclosed by the curves AP(t) and BP(t). It ranges 
from 0 to 1, where the former is the limit case in which the disruptive event occurs at 
time t0 and the system immediately loses its functionality, so that AP(t)=0 ∀t∈[t0;T*]. 
The latter is the limit case in which no functionality is lost, i.e., AP(t)=BP(t) ∀t∈[t0;T*].
Both 𝜓A and 𝜓B consider the overall evolution of the system during (a subinterval of) 
the observation period. However, in [10] an index based on the values of max drop 
and avoided drop is put forward:
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In this case, the evolution of the curves AP(t) and BP(t) are not relevant to establishing 
the value of the index, since only their extreme values are taken into account. While 
it is sufficient to consider only specific points in time to compute 𝜓C, the evolution of 
system performances over the control period is completely disregarded.

Besides the above-mentioned contributions, our literature analysis included several 
other papers that we do not list here owing to a lack of space. References that are worth 
mentioning are [11], which helped us frame the problem of resilience evaluation, and 
[12], which provided us with an extensive bibliography to which we refer for further 
reading about the topic. Since our case study relates to wastewater treatment, we 
also considered a number of references related to the resilience of water/wastewater 
treatment plants, including [13], [14] [15] and [16], but we could not find additional 
candidates for evaluation that met our requirements. In particular, all the indexes 
proposed in the water/wastewater literature are specific to a given topology and 
system structure and are difficult to generalize to other plants. 

FIGURE 2. PICTORIAL EVOLUTION OF THE STATE OF A SYSTEM UNDER ATTACK (TOP) AND 
RELATIONSHIP BETWEEN STATE EVOLUTION AND PERFORMANCE OF THE SYSTEM COMPUTED 
BY A FIGURE OF MERIT (FOM) FUNCTION (BOTTOM). NOTATION AND PICTURES FROM [17]. 

Considering the fact that the resilience indexes of our choice are based on performance 
indicators, the question of how to compute such indicators arises. In other words, while 
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it is relatively easy to monitor process variables, the performance of the system cannot 
always be monitored directly, and should be inferred from collected data. In Figure 
2, we present two plots excerpted from [17], wherein a resilience-oriented general-
purpose and model-free method to derive performance indicators from state variables 
is presented. The plot on the top of Figure 2 represents pictorially the evolution of the 
state of the system during a disruptive event. The deformed box represents the state of 
the system under duress, and it is meant to show that the impact on state variables can 
involve several of them at the same time. Nevertheless, as it is shown in the plot at the 
bottom of Figure 2, we must relate the evolution of state variables to some “bathtub” 
curve which resembles the curve AP(t) of Figure 1 (left). The proposal of [17] is to 
introduce a Figure of Merit (FOM) function, i.e., a function F:S→ℝ which maps any 
state s ∈S to a corresponding performance indicator. In general, mappings such that 
the condition F(s)>F(s’) holds whenever the performance of the system in state s is 
better than in state s’ should work. In [17] no details on how to derive such a function 
are given, because this is a system-specific process.

3. Case study: wastewater treatment facility

A. Brief Description
The facility2 performs sewage treatment using MemJet™/MemPulse™ MBR 
(micro-membranes) technology and ensures depollution and dumping at sea of urban 
wastewater produced by domestic and economic activities in an international tourist 
area encompassing a marine reserve. The facility handles an estimated maximum of 
36,000 people, roughly equivalent to a wastewater supply of 250 liters per person, 
per day. The maximum output reaches up to 1,200 cubic meters/hour of purified 
wastewater. The plant is heavily automated: all biological, chemical and mechanical 
processes are controlled and monitored by a SCADA system connected through the 
Internet with a remote monitoring center located in the headquarters of the utility 
company running the plant. The plant consists of a pre-treatment compartment, 
responsible for filtering large solids – e.g., rags, plastics, nappies, grit and floating 
materials, oils and fats – before feeding a balancing reservoir. From here, the pre-
treated input flow is pumped into the biological compartment where, passing through 
a denitrification (anoxic) process and a transition into nitrification-oxidation tanks, 
the oxygenated mixed liquor flows into the MBR reactor for solid-liquid separation 
and subsequent discharge of the effluent at sea. This is a physical-biological process, 
which requires precise software-based regulation in order not to wear out micro-
membranes and to avoid outputting untreated liquor. The maximum mass flow rate 
through of MBR tanks – a reference for the whole process − is 900 cubic meters per 
hour.   

2	 Name and location of the facility cannot be disclosed for security reasons.
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FIGURE 3. MATLAB/SIMULINK® MODELS OF THE NITRIFICATION-OXIDATION (NO) TANK 
SUBSYSTEM (LEFT) AND OF THE “SUBMERSIBLE PUMP” COMPONENT (RIGHT). THE ACTUAL 
UNIT IS DRIVEN BY AN ASYNCRHONOUS MOTOR  WITH 15KW OF  RATED POWER CONTROLLED 
THROUGH AN INVERTER. IN THIS SIMPLIFIED  MODEL WE ASSUME THAT THE INPUT SIGNAL IS 
THE POWER DELIVERED TO THE MOTOR AS COMPUTED BY A PROPORTIONAL REGULATOR.

B. Modeling and Simulation
In order to achieve a realistic, yet manageable, case study, we decided to model only the 
main wastewater cycle. Furthermore, we focus on the nitrification-oxidation process 
(tank NO) which is upstream from the final purification process (tank MBR) and 
thus is critical for the performance of the whole cycle. In Figure 3 (left) we show the 
detailed Matlab/Simulink® model of the tank NO. As we can see from the diagrams, 
we have assumed a simplified (first order) linear model, whereby the total volume V(t) 
of fluids contained in the tank is obtained by integrating the net inlet mass flow rate 
Q(t) which, in turn, is obtained by subtracting the outlet mass flow rate Qout(t) from 
the tank inlet Qin(t). While the latter is an input to the NO subsystem, the tank outlet 
is controlled by electrical pumps driven by a proportional regulator tracking a given 
set point r on the height of the tank. The detail of the motor/pump model is given 
in Figure 3 (right). Also in this case, we assumed a (second order) simplified linear 
model of an asynchronous drive, whereby the pump rotation generates both viscous 
friction and counter-motion force, which simulates the asynchronous drive frequency 
lag. 

Two key nonlinearities in the model are (a) the saturation of the control signal between 
0 and 15KW, which corresponds to the actual range of power within which the pump 
operates and (b) the presence of a non-return valve which does not allow the pump to 
reverse its operation. The goal of the regulator is to avoid the tank becoming too full, 
so as to avoid triggering emergency bypasses, or too empty, so as to avoid impairing 
the chemical process undergone in the NO tank. Both events are undesirable because 
bypasses dump untreated sewage liquor in the sea, whereas incomplete chemical 
processing of wastewater may cause failures in subsequent steps. For this reason, we 
decided to focus our study on this part, on the hypothesis that an attacker may gain 
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virtual access to the facility network and compromise this feedback loop and thus also 
the inlet flow to the MBR tank. As a yardstick for the calculation of resilience indexes, 
we simulate the plant without assuming external attack attempts in a Monte Carlo 
setting. To achieve this, we consider historical data made available from the managing 
utility to simulate regular sewage inlet. Random variates of the daily inlet profile under 
conditions of maximum utilization are obtained by adding (band-limited) Gaussian 
white noise with deviations of 20%. In the following, we call baseline scenario the 
simulation obtained by running the plant without attacks.

4. Modeling: simulating attacks, performance 
indicators and system-wide resilience

A. Attack Scenarios
To develop attack scenarios, we must consider the effects that an attacker may induce 
by gaining system access. Conceptually, feedback control loops are at the core of 
every CPS, and an attacker gaining access to the control system can alter them in 
three ways: (a) by changing the set point, (b) by altering the feedback signal, and 
(c) by changing the regulator parameters. To illustrate, consider the control loop that 
keeps the level of the NO tank close to the desired level shown in Figure 3 (left). Here, 
attack (a) corresponds to changing the desired tank level r, attack (b) corresponds to 
altering the actual tank level feedback h, and attack (c) corresponds to changing the 
proportional gain of the regulator P(s). In practice, an attacker may decide to perform 
all such actions and in more than one part of the system, as well as other disruptive 
actions – blocking the functionality of components or flooding them with requests. 
Some of these attacks can be prevented or detected by SIEM tools, but attacks on 
feedback loops can be subtle and destructive. As an example, the pump keeping the 
NO tank at level can be exercised more than necessary by fooling the controller about 
the tank level in a small, but persistent way. Such an attack pattern – similar to the 
one staged by the famous Stuxnet virus [18] – is very difficult to detect, but it reduces 
the residual life of the pump and thus it is worth evaluating its impact on resilience.

In our simulations we assume that an attacker may alter the set point of the regulator 
by subtracting a disturbance – attack (a). Under this hypothesis and given the structure 
of the feedback loop, this attack is equivalent to an alteration of the feedback signal – 
attack (b). We did not consider attack (c) as well as multiple or blocking attacks, but 
our evaluation framework is able to handle them without modifications. We can obtain 
several attack scenarios by changing:

•	 The duration, i.e., the control period (in seconds) T=tn-td, as defined in 
Section 2.
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•	 The amplitude Δa, i.e., how much the reference signal is changed.
•	 The frequency fa; when the disturbance is periodically zeroed every 1/fa 

seconds during T. 

In Figure 4 we show an example assuming T=12 hours and Δa=0.5 meters. The plot 
on top depicts the case in which the duration of the disturbance is held fixed during 
the attack: we call this positive single step attack scenario (SS+), and we foresee 
also a negative counterpart SS- (negative single step attack). The plot on the bottom 
depicts the case in which the attack signal has a period of two hours (fa in the order 
of 10-4 Hertz): we call this positive asymmetric attack scenario (AA+) and negative 
asymmetric attack scenario (AA-) its counterpart. We also combine the two attacks in 
a symmetric attack scenario (SA), wherein the disturbance ranges from Δa to -Δa with 
frequency fa. In Section 5 we report results obtained by running these scenarios with 
different values of T, and Δa. 

FIGURE 4. CHANGES TO THE NO TANK REFERENCEL BROUGHT BY THE HACKER ATTACK. SINGLE 
STEP POSITIVE (TOP) AND ASYMMETRIC POSITIVE (BOTTOM). THE PLOTS DEPICT TWO ATTACKS 
LASTING 12 HOURS EACH OVER A TOTAL TIME OF 48 HOURS. THE PERIOD OF THE ASYMMETRIC 
ATTACK IS 2 HOURS.

B. Building Performance Indicators Through FOM Functions
The resilience indexes presented in Section 2 rely on performance indicators, and 
suitable FOM functions must be provided to map observed variables to the performance 
space. Considering our case study, the variables that we observe are the following:
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•	 The height of the NO tank h; this is the state variable whose reference point 
is subject to the attack, and it is thus the main focus of our investigation.

•	 The power delivered to the pump Pin; among the effects of a successful 
and silent cyber-attack, wearing the pump and reducing its residual life is a 
concrete possibility.

•	 The outlet mass flow rate Qout; the mass flow rate through membranes in 
the MBR tank, which is downstream from the NO tank, must be regulated 
precisely, lest the purification process malfunctions or even ceases to work.

As for the definition of FOMs, we can make some observations:

•	 FOM functions are of the form F:D→ℝ, where D is the domain of the 
observed variable, but without loss of generality we can restrict our FOMs 
in the range [0;1], where 0 and 1 represent minimum and maximum 
performance, respectively.

•	 We posit that, when an observed variable x is close to some desirable 
value(s) xgood, then F(x)≅1, whereas if x is close to undesirable value(s) xbad, 
then F(x)≅0. 

•	 F(x) should behave monotonically with respect to the distance from xbad and 
xgood: it must decrease when getting close to xbad and increase when getting 
close to xgood – a concept we borrow from [19]. 

 
FIGURE 5. FIGURE-OF-MERIT (FOM) FUNCTIONS FOR TWO OUT OF THREE OBSERVED VARIABLES 
RELATED TO THE NO TANK: TANK HEIGHT H (TOP) AND POWER SIGNAL TO THE PUMP PIN 
(BOTTOM). EACH FOM FUNCTION TAKES AS INPUT AN OBSERVED VARIABLE AND RETURNS AN 
ADIMENSIONAL FIGURE BETWEEN 0 (WORST PERFORMANCE) AND 1 (BEST PERFORMANCE). 

We now consider Figure 5, where we represent FOM function for NO tank height 
(top) and power delivery to the pump (bottom). We do not show the one for outlet 
mass flow rate, but it similar to the ones shown in Figure 5. The shape of the functions 
is the simplest satisfying the constraints outlined above, where a linear decay in 
performance is assumed when variables are getting away from desirable values. More 
specifically, for each observed variable we identify (un)desirable values as follows:
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•	 The reference value of tank height h is 4 meters, therefore we consider 
hgood=4; the tank can tolerate some amount of overshooting of the reference 
level, but heights of five meters and more may cause spilling; therefore, we 
set hbad=5 and, symmetrically, hbad=3.

•	 Under normal conditions, the power delivery to the motor is Pin≅3 KW, 
therefore we set Pingood to the average value under normal operations; 
the pump operates within 0 to 15KW, which means that delivering power 
always close to 15KW reduces its residual life, whereas values close to 0 
mean that the pump is switched off or works at reduced power; therefore, we 
set Pinbad=0 and Pinbad=15000.

•	 Under normal conditions, the outlet mass flow rate is Qout≅0.05 m3/s, 
therefore we set Qoutgood to the average value that the variable assumes under 
normal daily operations. Attempting to deliver more than 0.3 m3/s mass flow 
rate to the MBR tank as well as shutting down the flow completely might 
damage the membranes; therefore, we can set Qoutbad=0 and Qoutbad=0.3. 

In Figure 5, we show FOM functions assuming linear decay of performances. We 
remark that this choice is arbitrary and other possibilities exist which are compatible 
with our assumptions, e.g., quadratic or cubic decay to penalize small changes with 
respect to xgood less than large ones, or RBF (radial basis function) profiles to smooth 
the decay and avoid discontinuities at the boundaries. 

C. A Discussion About System-wide Resilience Indexes
The introduction of FOM functions for each observed variable h, Pin and Qout, 
enables us to compute resilience indexes related to each variable separately. In our 
comparison this is fine because we have a relatively limited scope of investigation – 
the feedback control of the NO tank – and we wish to compare the behavior and the 
sensitivity of the indexes we consider. However, it can be desirable to build indexes 
that summarize the performance of the system as a whole, instead of relying on many 
separate figures. This is especially true when the size of the system grows, and so 
does the number of observed variables. Keeping in mind that we seek a model-free 
and general-purpose approach, we can consider three possibilities to extend resilience 
indexes to a system-wide measure:

•	 Use a FOM function that maps all the observed variables into a single 
performance indicator; in our case, this would amount to devising a vector 
function F(h,Pin,Qout) to summarize the change of the observed variables 
into a single performance index.

•	 Construct a system-wide performance indicator out of scalar FOM functions; 
in our case, this would amount to combining F(h), F(Pin) and F(Qout) into a 
single measure, e.g., a linear combination of the three F(h,Pin,Qout)=αF(h)+ 
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βF(Pin)+γF(Qout), where α,β,γ ∈[0;1] and α+ β+γ=1 are weights determining 
the contribution of FOMs.

•	 Finally, one may either come up with a definition of resilience that 
accommodates a vector as a performance indicator, or combine resilience 
indexes computed with scalar performance indicators on single variables; 
in our case, one may consider, e.g., that a worst-case estimation of the 
resilience of the whole system can be obtained by considering the smallest 
index computed according to F(h), F(Pin) and F(Qout).

The first approach is quickly ruled out as the number of observed variables increases. 
As long as the definition of the FOM function relies on a manual process, defining 
hyper-surfaces that are meant to respect the given constraints is untenable. One may 
consider using optimization or machine-learning techniques in order to devise suitable 
ℝn→[0;1] mappings (n number of observed variables), but the complexity of the 
procedure should be factored in. The second approach provides a simplification of the 
first one, and it remains amenable to manual configuration as long as the number of 
FOM functions to combine remains small. Scalable linear optimization and relatively 
simple machine-learning techniques can be used when the number of variables to 
combine is growing, and hierarchical composition is a possibility. Also, the definition 
of each single FOM will remain an explainable scalar-to-scalar function. Clearly, the 
choice of weights to combine the FOM functions is critical for the assessment of 
resilience, because underestimating or overestimating impacts of a specific FOM may 
obscure relevant effects in the evaluation of the global resilience index. The third 
option shares the same issues as the first one when it comes to finding a vector-based 
index, whereas the combination of different resilience measures is the only approach 
for which some literature exists. In particular, in [6], the authors propose a method 
to combine different indexes based on the assumption that they are computed from 
independent systems. This proposal is not applicable to our case, because the indexes 
are part of a single feedback control loop. In this case, our proposal is to apply a 
“weakest link” rule, and estimate the resilience of the overall system considering the 
resilience index with the smallest median among the ones we compute.

5. Experimental analysis

We briefly recapitulate the definitions that we have introduced so far to put them 
in context for our experimental setup. Starting from the resilience indexes that we 
define in Section 2, let F:ℝ→0;1 be one of the FOM functions introduced in Section 
4-B, and x∈{h,Pin,Qout} be one of the observed variables, where x(t) denotes its 
value under normal operations and xa(t) denotes its value under attack scenarios. We 
consider four resilience indexes defined as follows:
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The indexes 𝜓A and  𝜓B are exactly those defined in Section 2, under the hypothesis 
that t0=0. The index 𝜓C is computed assuming that the worst-case estimation of the 
maximum performance drop is the minimum performance of the system under normal 
operating conditions for a given observation period T* and that the avoided drop is the 
minimum performance of the system under attack. Finally, the index 𝜓D is obtained 
from 𝜓A by changing the span of the integral from T=tn-td to T*. The idea behind 𝜓D 

is that, while in our simulations the control period T is known, in practice it might be 
difficult to estimate. On the other hand, the observation period T* is always chosen by 
design: in all our experiments, T*=24 hours.

As far as the attack is concerned, we consider all the scenarios defined in Section 4-A, 
namely single step positive and negative attacks, denoted SS+ and SS-, symmetric 
attack, denoted SA, and asymmetric positive and negative attacks, denoted AA+ and 
AA-. For each such attack, we build a factorial experiment with different levels of T, 
Δa and fa. In particular we consider:

•	 T={6,12,18}, i.e., the attack always starts at midnight and lasts 6 to 18 hours.
•	 Δa={0.25,0.5,075}, i.e., the attacker can change the tank reference level 

from 25 to 75 centimeters.
•	 fa={1/3600,1/7200,1/10800}, i.e., the attack period can be one, two, or three 

hours.

The main reason behind the choice of these values is to increase the probability that 
the attack on the system remains silent. Indeed, decreasing the period of the attack     
(1/fa) below two hours can trigger fast oscillatory system dynamics (e.g., in the pumps) 
that are unusual in the normal operation of the facility and thus can be identified as 
anomalous. Also, attempting to change the tank reference level beyond one meter can 
cause overflow alarms to be triggered. Finally, the attack period is kept at a fraction 
of the observation period, knowing that longer attack periods imply higher chances 
of being uncovered. As mentioned in Section 3-B, all the scenarios are simulated on 
a daily basis, obtaining a different value of the performance indexes that we average 
over the number of days – one hundred in all of our experiments – for which the 
simulation runs.3

3	 All our experiments run on a PC equipped with an Intel 2.6Ghz Dual Core i7 CPU, 32GB of RAM and 
running Matlab/Simulink® ver. 2018a on Mac Os Sierra. 
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TABLE 1. RESILIENCE INDEXES COMPUTED FOR ALL OBSERVED 
VARIABLES CONSIDERING FIVE DIFFERENT ATTACK SCENARIOS. 

In Table 1 we show the results for T=6 and Δa=0.5. Each row of the table is related 
to an attack scenario. Columns are divided into four groups, corresponding to the 
resilience indexes, and each group reports the median and interquartile range (iqr) 
of the resilience index computed using a specific variable and related FOM function. 
The choice of median and iqr as measure of center and spread, respectively, are 
motivated by the fact that they are more robust to outliers and the presence of skewed 
distributions. A glance at the table reveals the following facts:

•	 The iqr is always at least one order of magnitude smaller than the median 
except when the median is 0 as in 𝜓C; this indicates that indexes are not very 
sensitive to the random variation of the input flow. 

•	 The index 𝜓D is more conservative than 𝜓A; this is to be expected, because 
the former averages the effects of the attack over the whole observation 
period.

•	 Considering observed variable h, the lowest resilience values are obtained 
for the SS+ attack; this is because the attack signal is subtracted from the 
reference level, and thus throughout the duration of the attack the tank is 
seen by the controller to be emptier than in reality; in AA+ and SA attacks 
this is not true, because the attack signal oscillates and, on average, the 
controller keeps the tank level closer to normal.

•	 Considering observed variables Pin and Qout, the worst figures are obtained 
for the SA attack because the performance of the pump and the mass flow 
rate output are far from 1 only during transient regimes induced by the 
“steps” in the attack signals; therefore, in  SS+ and SS- attacks, the height of 
the tank remains “off balance” while the pump and the mass flow rate output 
stabilize to levels corresponding to normal operation. 

We analyzed the data shown in Table 1 considering 36 distributions obtained with 
SA, AA+ and AA- attacks. We preliminary tested each distribution for normality 
with the Shapiro-Wilk test, and groups of distributions across attack modality for 
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homoskedasticity (equal variance) with the Levene test (non-parametric version). The 
results can be summarized as follows:

•	 the null hypothesis of the Shapiro-Wilk test (values being normally 
distributed) cannot be rejected at the 5% confidence value for all but a 
few distributions, e.g., 𝜓A computed on state variable h for SA, and the 
distributions of 𝜓C for state variables Pin and Qout.

•	 considering the distributions of single resilience indexes computed for 
specific state variables, and comparing them across different attacks, the null 
hypothesis of the Levene test (variances being equal) can be rejected at the 
5% confidence value for all the groups we consider with the single exception 
of 𝜓C for state variables h and Pin.

Given the above results, we compare the distributions across attack modalities with 
a multiple pairwise Mann-Whitney U-test (non-parametric alternative to t-test) using 
Bonferroni’s correction for p-values. Overall, the results of this test confirm that the 
qualitative observations we made above hold true.

For example, in the case of 𝜓A considering variable h, and attacks SA, AA+ and 
AA-, the null hypothesis that two samples obtained from different attacks are coming 
from the same distributions can be rejected at the 5% confidence level in all cases. 
For lack of space, data obtained with  T=12,18 hours, Δa=0.25,0.75 meters and 
fa={1/3600,1/10800} are not reported, but similar considerations apply also to these 
cases. 

Using the rule proposed in Section 4-C, the overall resilience of the system under 
the various attacks can be estimated considering the minimum value for each index 
in a given row. For instance, if we consider 𝜓A with T=6 and Δa=0.5, we would get 
a global index ΨA = 0.4577 (the value for h) in the SS+ attack, and  ΨA = 0.3271 (the 
value for Pin) for the SA attack.

6. Discussion

While our current results are not a ready-made tool for detecting or preventing cyber 
attacks, in principle some of the resilience indexes we propose could be deployed 
to support an intrusion detection tool, e.g., by letting the tool “learn” the baseline 
distribution of some resilience index during secure operation, and then relying on the 
tool to detect significant deviations from the baseline during normal operation. Our 
methodology consists of three steps:
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•	 Identify the relevant state variables considering those available from process 
control logs.

•	 Build FOM functions considering (un)desirable values and making 
assumptions about the effects of variables change on system performance.

•	 Compute resilience indexes based on FOM functions.

We stress that any system is amenable to this analysis, therefore our methodology is 
general-purpose. It is also model-free, because identifying state variables does not 
require knowing system dynamics in detail; also, identifying (un)desirable values 
requires behavioral knowledge of the process being carried out by the system but does 
not require the mathematical model of the system. The advantage of relying on our 
methodology, with respect to standard intrusion detection applied to single process 
variables, is that our resilience indexes are built and tested to provide statistically 
significant deviations when anomalies affect the system, and can also be used to 
summarize the combined effect of several process variables at once. More generally, 
if a simulator of the CPS under scrutiny is available, one can test and tune resilience 
indexes to achieve desired properties by means of controlled experiments, and the 
indexes engineered through simulations will be deployable on the implemented 
system without further adaptations. For systems in which simulation is not an option, 
computing indexes is still possible by relying on process data and system logs, while 
testing and tuning could be performed by replaying historical data.

One key issue arising in practice is the ability of the selected indexes to tell naturally 
occurring faults from cyber attacks. Given our current approach, a statistically 
significant deviation in resilience indexes for the wastewater facility can be produced, 
e.g., by a faulty pump or a stuck-at-level tank sensor. However, naturally occurring 
faults exhibit predictable patterns, whereas cyber attacks, in general, do not. Therefore, 
hints about the cause of an anomaly could come from comparison between several 
indexes, including those obtained simulating possible faults. While we have not yet 
developed a procedural way to diagnose symptoms of decreasing resilience indexes, 
we can observe that the behavior of the system in case of SA, AA+/- attacks can hardly 
be traced back to a physical anomaly: a change in resilience indexes, that are known to 
be sensitive to those attacks, will indicate that the system is being compromised with 
high probability. 

7. Conclusions and future work

We have improved on the current state of the art in resilience evaluation by providing 
experimental data showing that it is possible to summarize the resilience of a system 
through numerical indexes that ensure model freedom and generality. Our approach, 
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based on FOM functions computed from observed variables, does not require a 
mathematical model of system dynamics, but only knowledge of (un)desired values 
for process variables. We have provided a discussion and preliminary experimental 
evidence about combining resilience indexes obtained from several process variables. 
Future work will include furthering our investigation into the combination of several 
FOM functions or resilience indexes in systems with several observed variables 
and more complex hierarchical structures. We plan to analyze data from logs of real 
systems and validate the results obtained with simulation to provide tools for security 
monitoring for critical infrastructure. 
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