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Towards Classifying 
Devices on the Internet 
Using Artificial Intelligence

Abstract: Hundreds of millions of devices are directly reachable by anyone on the 
Internet. Security researchers and malicious actors are highly interested in ICS, 
IoT, and building automation and networking devices that can be compromised to 
negatively affect either a specific person or organization or a whole country at once. 
The current approach for determining a class of individual device is to conduct a 
manual investigation or apply static rules to large sets of devices, which is time-
consuming and ineffective. We are proposing to utilize neural networks for automated 
classification.

Many devices have a generic web interface supporting HTTP protocol. We have 
investigated which features of the HTTP responses from these devices are meaningful 
for training the neural network model and enabling classification of devices. We 
have trained neural network models and assessed their accuracy to be 87%. We are 
analysing the classified sets of the whole Internet scans consisting of tens of millions of 
devices and comparing them between the years 2018 and 2019 to identify the changes. 
This kind of all-encompassing view might reveal positive and negative trends that are 
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1. INTRODUCTION

Billions of different devices are connected to the Internet and predictions for the next 
decade expect geometric growth. Statista projects that there will be 75 billion IoT 
devices by 2025 [1]. The way these devices are connected to networks varies, and 
only a small portion of all devices on the Internet are publicly reachable by anyone. 
Unsophisticated actors can access, abuse and exploit reachable devices with known 
vulnerabilities. Understanding the potential risks and corresponding impacts, or 
assessing the current state, requires knowledge of classes of devices and their location. 
Academic and technical research can benefit from this understanding, and it can 
also provide sufficient background to help policymakers address security concerns 
regarding these devices.

Identification and classification of reachable devices on the Internet has traditionally 
been a straightforward process. The targeted protocol port gets tested to check it is 
open, and possibly a protocol payload is sent and the response processed. Depending 
on the case, the investigation stops here or continues with additional protocol requests 
that extract the properties of the devices, possibly identifying the manufacturer or 
model. If different classes of devices use the targeted port, then classification can be 
attempted using static rules. Heterogeneity of devices has grown over time, and it has 
become unfeasible to achieve a high coverage and accuracy rate when classifying 
large sets of devices. We are attempting to solve this problem by creating a neural 
network that replaces the static rule stage in the network research. 

In Chapter 2, we explore what kind of devices are available on the Internet and why, 
as well as how they can be classified. Chapter 3 describes our application of machine 
learning to solve the device classification problem. Chapter 4 explores the results of 
the classification and compares them between standard and alternative HTTP ports 
between the years 2018 and 2019. Conclusions and future work are discussed in 
Chapter 5.

happening to specific classes of devices, which might be correlated with real-world 
events, e.g. new policies issued by governments.

Keywords: devices on the Internet, classifying devices, machine learning, neural 
network
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2. DEVICES ON THE INTERNET

In this research, we are attempting to begin to ask what exactly is on the Internet 
and what the risks are. We are only investigating devices that are reachable on the 
Internet – reachable meaning that the device receives, processes, and responds to 
network packets coming from anywhere on the Internet. In general, these packets 
target specific ports corresponding to known and common protocols. Only a small 
fraction of all the devices on the Internet are reachable in this way.

A significant number of different services are required to be reachable on the Internet 
for anyone in order to function properly, e.g., web sites on HTTP and HTTPS, 
authoritative DNS. Some services are required only for use in a home, office or ISP 
local network, e.g. DNS resolver, UPnP discovery. The core issue is that the number 
of devices that are reachable on the Internet far outweighs the number that is required. 
The leading causes of unnecessary reachable devices are manufacturers’ default 
configurations and network misconfiguration while installing a device.

Reachability significantly increases the attack surface of these devices. Some services 
can be abused by default, e.g. DNS resolver without rate-limiting for reflected DDoS 
attacks. Some devices are entirely unprotected while others might contain a publicly 
known vulnerability that an attacker has to exploit. Depending on the vulnerability, 
the attacker might achieve a different level of access, from leaking insignificant 
information up to full control of the device. Depending on the class of the device, 
the impact of the compromisation can vary drastically. A compromised ICS device 
can interrupt essential services to vast regions, affecting millions of people, while an 
unprotected printer might only waste printing toner, causing inconvenience to a single 
person.

Even if there are protection mechanisms in place like authentication, no immediately 
abusable services and no known exploitable vulnerabilities, the risk that new 
vulnerabilities can be discovered in future is ongoing. Unnecessary reachability is 
already an indication of poor device management practices. No security updates for 
most devices is the norm; many of the newly installed devices are left untouched until 
the end of their life for as long as they serve the required purpose.

There are a variety of protocols worthy of investigation for classification. In this 
research, we are only focusing on the HTTP protocol being utilized on standard port 
80 and common alternative port 8080. Implementing a web control panel utilizing 
HTTP protocol is the cheapest and easiest way that manufacturers can provide a 
control interface for a device being sold to consumers. This is a ubiquitous protocol 
supported by every investigated device class, justifying the choice.
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A. Classifying Reachable Devices
Multiple approaches suitable for classification of remotely reachable devices exist, 
but they can all be reduced to acquiring properties of devices and applying a set of 
static rules to them. The most common property is a check to verify if a specific port 
or range of ports is open. After this check, port-specific negotiations can occur, and 
additional information, varying drastically in quality and quantity, can be acquired. At 
the very least, it can be confirmed if the specific device on the specific port supports 
the tested protocol. In best-case scenarios, the manufacturer, model, version and even 
location and purpose of the device can be determined.

After possible properties are acquired and investigated, rules can be developed to 
match these properties and to locate all matching devices in large data sets, e.g. a full 
Internet scan. These rules can be something as simple as a unique and rare port being 
open, up to matching the manufacturer and model returned in the response. These 
rules are made by humans and usually target common or high impact devices. As 
many devices require thorough manual investigation to classify them, it is unfeasible 
that full coverage can be achieved. This is the most common approach for classifying 
devices in academic and industry research, including device search engines such as 
Shodan and Censys.

Additional properties can be gathered indirectly by fingerprinting the scanning and 
communication process or independently by identifying a network, its location and 
DNS name. These properties are primarily used in the manual investigation of the 
individual devices and rarely for creating static rules because of the high variability 
of this data.

This approach has a major drawback. It works perfectly for locating a specific subset 
of a specific device class using its properties and their values, which are known in 
advance and were acquired through manual investigation. But what happens when 
there is a large set of devices or even a single device that has to be classified? The set 
of available static rules can be applied to it, and there might be a match; in that case, 
there is no issue. However, if there is no match, then the device is left unclassified 
and requires manual investigation, which is time-consuming and does not guarantee 
success. Utilizing a machine learning classifier can solve these types of questions.

B. Related Work
Until recently, classifying devices on the Internet was done in a static way (described 
in 2.A) both for academic research and industry purposes. Only in recent years have 
researchers attempted to address this issue using machine learning. Two vantage 
points are being investigated: reachable device classification using data sets from 
Internet scanning, and device classification using an observer data set, which includes 
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all communicating devices, including non-reachable ones. The latter does not provide 
a full Internet view but provides highly valuable information for internal networks 
where observer access is possible.

The observer’s vantage point enables data to be gathered over long periods of time, 
from which behavioral profiles can be created. It is also possible to create profiles 
without decoding the appropriate protocols, and in some cases, it is even impossible 
because of encryption, e.g., HTTPS. These profiles allow not only the classification of 
devices but also the identification of misbehaving compromised devices. Sivanathan 
et al. created a classifier based on existing campus network data that was able to 
distinguish IoT and non-IoT devices [2]. Bezawada et al. acquired fingerprints from 
different levels of the same network traffic and combined these into behavioral profiles 
suitable for machine learning [3].

Yang et al. trained classifiers on data acquired from multitude scanned protocols 
commonly used by IoT and ICS devices, which were augmented with fingerprints 
extracted from the network layer communications [4]. This research introduced 
a significant improvement in labelling training set by the automated scraping of 
manufacturer and model names of devices from the Internet and matching them 
against protocol responses in the data set. This developed model has been applied by 
Jia et al. to determine ownership of devices [5], therefore demonstrating the value of a 
universal device classifier in helping to solve various research problems.

C. Classes of Devices
Multiple different classifications have been proposed for the devices on the Internet, 
varying significantly in terms of set size [3], [4], [6]. We propose a small set of 
10 classes where every class is selected based on the role, impact, and size of the 
reachable device set as well as its historical prevalence. 

Setting device class definitions is a balancing act, as these can be viewed from the 
user, functionality, impact and observer perspectives. Creating more classes requires 
a larger and more precise labelled training set without guaranteed improvement of 
the total overview. We have identified indistinguishably similar behavior even within 
small class sets because of the generic HTTP protocol requiring a special class for 
these devices. At the same time, some of the proposed classes have small subsets of 
devices, which vary drastically in their behavior and specific purpose. Although the 
labelled set is significant and proportional to the whole data set, it is not sufficiently 
representative of various rarer devices and subclasses to train the classifier. When 
combined with hard-to-distinguish protocol responses, this can introduce even more 
uncertainty. These issues can be mitigated by augmenting data sets with features from 
other protocols.
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The ICS class contains the most impactful devices which can affect not only individual 
users but potentially whole regions. It includes industrial control systems, SCADA, 
and building automation devices. The role and software vary drastically for devices in 
this class. Although through significant scanning and notification efforts the number 
of reachable devices has fallen, we are keeping this class. 

Network devices are classified as the NET class, which includes all the wired and 
wireless devices used in individual residential installations and most of the devices 
serving a more significant role on the network, providing connectivity to organizations 
and other networks. These are primarily routers, switches, and firewalls. The impact 
of attacks on these devices cannot be overstated, as not only detectable network 
interruptions but also hidden MITM attacks can be executed. Other devices in this 
class include network storage, televisions, and streaming set-top boxes. The INFRA 
class encompasses data center infrastructure devices affecting the physical properties 
of the server hardware. These are high-impact devices providing server control panels 
and virtualization solution control panels. 

Although a variety of IoT devices are significant from the serving role viewpoint, we 
classify all of these in one IOT class. The ratio of IoT devices connected to the Internet 
versus directly reachable devices is lower than for most other classes. This can be 
explained by the different ways in which different devices are connected to networks. 

The historically prevalent device classes PRINTER, IPCAM, and VOIP are kept 
separate. These classes had historic public mass attacks that negatively affected a 
large number of people, e.g. wasting toner printing unwanted documents, leaking 
private video feeds. Thus their reachability should have decreased over time. The 
IPCAM class includes not only IP cameras but also DVR and NVR devices that 
provide recording and viewing functionality. The PRINTER class includes printers 
and network print servers. The VOIP class includes phone sets, conferencing solutions 
and VoIP gateways.

It is possible to determine with a high degree of likelihood whether or not a specific 
device is a generic web server. Features like unsupported HTTP protocol version 
1.1, the wrong clock which starts to count time from Unix 0 seconds, and the lack 
of any headers indicate custom or outdated server software, which usually suggests 
an embedded device and only in rare cases serves a generic web server role. If 
we are unable to classify these devices into any other category because response 
features are insufficient, we classify them as UNCLEAR. This class also includes 
manufacturers that are represented in multiple classes but where no clear dominant 
class is established and it is not possible to distinguish device classes from responses, 
e.g., the same web interface is re-used across classes. In the remaining cases where 
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we are unable to confirm that the device is not a generic web server, we classify them 
as UNCATEGORIZED.

From a security research perspective, generic web servers hosting various web 
applications are often the least exciting class of reachable devices. These devices are 
much more often properly managed and automatically updated, as they are usually 
reachable on purpose. The most vulnerable parts of these devices are web applications 
themselves, not the HTTP servers, but these applications in most cases are reachable 
using the domain instead of the IP address, which involves a different kind of scanning. 
There are web applications that are configured to process requests received without 
the domain name, but quantity-wise they are a minority. We classify all generic web 
servers, web applications, and services related to these, e.g., CDN, as WEB class.

3. NEURAL NETWORK

The scanning output is HTTP responses that are text in a JSON format. The text 
classification task in the cybersecurity realm is implemented by a number of text 
classification methods. Often, classification methods suffer from large vector sizes and 
are less effective as the number of samples rises. The autoencoder makes use of neural 
networks which are already in use by latent semantic analysis for text categorization 
[7] to reduce dimensionality and to improve performance. Another application 
[8] employs an artificial neural network to improve text classifier scalability. The 
advantage of the autoencoder method is that it learns automatically from examples. 

The main advantage of existing text classification methods, such as Support Vector 
Machine (SVM) [9], Word Embeddings Neural Networks or the Gensim tool, is that 
they perform better with a massive database for training to provide meaningful results, 
and we have a big dataset. However, the common disadvantage of these techniques 
is the lack of results transparency due to employing vectors containing real-valued 
numbers. These tools provide results, but it is difficult to explain how the results are 
calculated. Another disadvantage is the inability to handle unknown words or words 
which were not included previously in the training vocabulary. The SVM approach is 
limited by choice of the kernel, which is a general weak point of SVM applications. 

Alternative algorithms employing categorical features and labels are Naive Bayes 
[10], Logistic Regression [11], and Random Forests [12]. Approaches based on 
decision trees such as Random Forests are very fast to train but quite slow to create 
predictions once trained. A higher degree of accuracy requires additional trees, which 
means losing performance. Naive Bayes often serves as a robust method for data 
classification, but the vectors representing an incident in Naive Bayes are larger than 
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in word-embedding methods, and also Naive Bayes classifiers make a very strong 
assumption on the shape of the data distribution. Further problems may result due 
to data scarcity, which can result in probabilities going towards 0 or 1, leading to 
numerical instabilities and worse detection results. Logistic regression, like a Naive 
Bayes method, requires each feature in an incident to be independent of all other 
features. Logistic regression models are also vulnerable to overconfidence as a result 
of sampling bias. Consequently, for the particular use case of classifying IoT devices, 
we suggest using the simplest neural network for text classification that scales well 
because of the small vector size while maintaining a high level of accuracy.

A. Features Used for Classification
Features of the HTTP responses suitable for the classification have previously been 
explored by Lavrenovs et al. [13], [14]. For this research, we have decided to use all 
HTTP response headers and their values, Autonomous system (AS) name, HTML 
structure hash, body title, body keywords, SSL certificate issuer, and subject.

Specific features are extracted from the response body. HTML tree, in many cases, 
uniquely identifies groups of the same devices as long as the tree is large enough. To 
decrease data pollution, we are using only the hash of the HTML tree. The first title is 
extracted from the HTML body. These titles can often identify specific device models, 
manufacturers and functionality. The body of the response contains a significant 
number of mark-up language elements, which do not necessarily benefit us as separate 
features if the body tree hash is being utilized. We keep only the 1,000 most common 
words.

Although HTTPS protocol is not being targeted specifically, a small subset of the 
devices with redirects to HTTPS have numerous TLS properties. However, most of 
them are usually not uniquely identifying device classes on their own. Even supported 
ciphers and their order can be used as features, and all of these properties are worthy 
of investigation in the future for the HTTPS device scan on the Internet. For this 
research, we use only SSL certificate issuer and subject as those were used for 
manually labelling the sample and often identified the class of the device on their own.

B. Data Sets
We are operating with four data sets created by scanning the Internet using scanning 
tools commonly used for research: zmap and zgrab. Both HTTP default port 80 and 
common alternative port 8080 were scanned in December 2018 and one year apart in 
December 2019. Up to three redirects are being followed to any port including HTTPS, 
in which case TLS negotiation is being saved as well. For the standard port in 2018, 
there are 54,811,827 elements, and in 2019 there are 57,131,825 elements. For the 
alternative port, there are 7,792,077 and 8,100,201 elements, respectively. An element 
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is a single response or response redirect chain corresponding to a single request that 
contains at least one proper HTTP response. Specifically targeting HTTPS ports and 
also analyzing broken responses would identify additional web control panels, but we 
have excluded that from the scope of the current research.

We have augmented elements in data sets with additional features. AS name is looked 
up via the Maxmind GeoIP database. HTML tree hash, first title and body words are 
all generated from the response HTML body itself.

The labelled set consists of 171,791 elements. It was created from random elements 
of the 2018 port 80 data set and therefore is unbalanced across classes. There are 
132,562 WEB, 22,002 NET, 9561 IPCAM, 711 INFRA, 265 VOIP, 243 ICS, 218 
IOT, 153 PRINTER, 4175 UNCLEAR and 1901 UNCATEGORIZED devices in the 
labelled set.

C. Comparison to the Existing Classification
The overall idea of our solution and [4] is the same: to classify devices on the Internet 
using artificial intelligence from the remote point of view. The classification model 
suggested in [4] provides classification on three levels: the type of IoT device, vendor 
and product. In contrast, the proposed solution aims to classify only by type of IoT 
device because the vendor and product is just additional information to the class. The 
approach of crawling additional device information from the Internet, using HTTP 
queries and analyzing different protocol levels, looks promising but is very unreliable, 
taking into account the sparse information for such queries. This could be done for the 
proposed solution as future work, e.g. via query language such as Sparql to compare 
if this method yields additional value.

Our approach mainly uses information from HTTP headers and body. Yang et al. 
[4] perform substantial manual pre-training steps. In our approach, we leverage the 
knowledge and rules developed prior to this research and described in [13], [14]. 
The existing solution has a very complicated neural network while we propose an 
alternative solution with possibly more dedicated methods.

Yang et al. classified 15.3 million IoT and ICS devices [4], whereas we analyzed 
up to 57 million all type devices. Their protocol coverage is higher - 20 protocols 
(4 ICS). We analyzed HTTP exclusively, but plan to cover additional protocols in 
the future. Using network-level fingerprinting is extremely unreliable on its own and 
may produce bias in the overall results. Compared to 41 device types (classes) in 
the existing research, we make use of 10 classes evaluated from aggregated expert 
knowledge. The more classes we have, the more unreliable the classification is. The 
identification of classes itself is a challenging task even for manual analysis and 
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definition for humans. Therefore, a high number of classes could reduce overall 
accuracy since there is no common understanding of class definitions.

D. General Workflow
Device classification employs features extraction and training of the neural network to 
produce a model for the queries. Classification predicts previously defined categories 
for a given sample. There are ten expert-defined classes: ICS, INFRA, IOT, IPCAM, 
NET, PRINTER, UNCATEGORIZED, UNCLEAR, VOIP, WEB. Supervised learning 
employs labelled training data to learn mapping functions from a given input (list 
of words) to the desired output value (class name). A supervised learning algorithm 
analyzes the data through weights and activation functions that activate neurons and 
produce an inferred function, which is then used for mapping new samples or correctly 
determining classification labels for unseen instances.

The workflow process is composed of two parts. One process is neural network model 
training, where the workflow acquires device data from different sources such as the 
Internet and domain experts. The model is trained and regularly updated by extended 
knowledge from new device crawls.

Figure 1 provides an overview of the device classification using neural networks. 
This approach is based on a knowledge base containing a large number of labelled 
responses in JSON format (step 1). This data can be provided by different means, 
collected at different times for particular operating systems, and can be separated by 
type of application and protocol. The novelty of this approach is that, for typical use 
cases, we propose to have associated decision rules for initial labelling. All such rules 
are then aggregated in a common labelled dataset, which supports final classification. 
We send requests to devices, and the system extracts features (step 2) from the 
response and stores them for further analysis and queries the model that was trained 
on the knowledge base. During the feature extraction, we apply parsing, filtering, and 
normalizing of the content. The final classification result is based on querying the 
model (step 3) or cache (step 4), if sample hash is already known, and is a report in 
the form of a particular class name.
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FIGURE 1. THE WORKFLOW FOR FEATURE EXTRACTION AND CLASSIFICATION OF DEVICES 
USING A NEURAL NETWORK.

E. Model Training
The data for model training is prepared as described in Figure 1 in the previous section. 
After acquisition and feature extraction, the input for the model is a list of words for 
each sample. This is then converted into the one-hot vector to be processed in the 
input level of the neural network model (step 4) in Figure 2. To perform training, 
features aggregated in text form must be converted into numerical values, since 
machine learning algorithms and deep learning architectures cannot process plain text. 
Therefore, each uploaded sample (see Figure 2) is converted into an array of strings, 
where each string represents a particular feature. Then strings are encoded by indices, 
and each feature string has a unique index. If this feature repeats in the samples, we 
re-use its index. Finally, arrays of indexes are converted in one-hot encoded vectors, 
meaning that the position of each feature in the original feature set is encoded using 
“1” if a feature exists in the given place or “0” if not.

FIGURE 2. THE WORKFLOW FOR MODEL TRAINING FOR DEVICES USING A NEURAL NETWORK 
APPROACH.
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The neural network used a total of 517,642 parameters during the training. A summary 
of the neural network training is presented in Table 1. The neural network is composed 
of an input layer and an output layer. The number of neurons in these layers ranges 
from 10 to 512. The input layer uses a rectified linear unit (ReLU) as an activation 
function. The output layer employs a softmax activation function, which provides 
probabilities as to which of 10 classes a particular sample belongs to.

TABLE 1: SUMMARY OF THE NEURAL NETWORK TRAINING PROCESS.

We performed a total of 10 training iterations (epochs). The neural network training 
and accuracy calculation process took 15.723163 seconds (Figure 3). This figure 
shows that loss and validation loss decreased and accuracy and validation accuracy 
increased with each epoch.

FIGURE 3. ACCURACY AND LOSS CHARACTERISTICS BY NEURAL NETWORK TRAINING.

We trained two models - one with the full labelled data set (large) and one balanced 
model (small). Comparing their accuracy (about 87% for small and 97% for the 
large data set), we noticed by randomly sampling the classified output of the whole 
data set that the small model performed better due to the bias in the large data 
set. As the full labelled data set primarily consists of WEB devices, the classified 
output is significantly skewed towards classifying devices as WEB. To avoid bias 

Layer Type Activation Function Neurons # Parameters #

Input layer Dense ReLU 512 512512

Output layer Dense Softmax 10 5,130
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of overrepresented classes in the labelled data set (in total 171,791), such as WEB, 
we employ a balanced labelled training set (in total 11,479): ICS:243, INFRA:711, 
IOT:218, IPCAM:1,999, NET:2,000, PRINTER:153, UNCATEGORIZED:1,901, 
UNCLEAR:1,999, VOIP:265, WEB:1,999. The labelled training data set was divided 
into a training set (5,628), validation set (2,413), and test set (3,447). The test accuracy 
is 0.87277.

4. RESULTS

The model was trained using the 2018 standard port labelled data set and applied 
to the 2019 standard port data set as well as the port 8080 data sets for both years. 
Although the reachability of devices has been recognized as a poor and high-risk 
management practice, there was an increase in the data set sizes in 2019. 

The standard port 80 classification results are provided in Figure 4. As expected from 
the labelled set, WEB devices were the most prevalent ones. It was not expected that 
the UNCLEAR and UNCATEGORIZED devices would be so numerous, but that 
can be explained. UNCLEAR and UNCATEGORIZED devices often have a small 
set of rare features extracted from the HTTP responses, which makes even manually 
classifying them challenging and in many cases impossible. While creating the labelled 
set, many of these devices were categorized. This was done through numerous weak 
rules utilizing only the available features. These features might be sufficiently rare and 
unique to not be applicable to the whole data set, in which case HTTP response data 
on its own might not suffice for accurate classification.

We can observe a slight decrease in reachable INFRA and IOT devices in 2019. As 
the number of IOT devices is growing significantly, it would be expected that the 
number of reachable devices would grow over the one-year period. However, this 
class of devices is the only one of the defined classes that historically could rarely be 
connected in a way that made them reachable. A more significant decrease in VOIP 
could be explained by changes in the way this type of device is deployed and managed 
at the vendor level. 

From the publicly well-known attacks targeting IPCAM and PRINTER devices, it 
could be expected that the number of reachable ones would decrease significantly, 
but no such trend is observable. One explanation is that the number of newly added 
reachable devices closely matches the ones that were mitigated. It is currently not 
clear what portion of these almost 3 million IPCAM devices have to be reachable for 
remote surveillance and recording purposes.
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A large number of NET devices was expected. A residential Internet connection device 
can expose the control panel to the Internet even if the initial setup is done by the ISP 
technician. A significant drop in the number of these devices might suggest that the 
device life cycle could be playing a role, with older ones getting replaced and newer 
ones having a better configuration.

FIGURE 4. DISTRIBUTION OF DEVICE CLASSES FOR PORT 80 FOR 2018 AND 2019.

The alternative port 8080 classification results are presented in Figure 5. As expected, 
the WEB devices are a proportionally smaller class than on the port 80 where generic 
websites usually reside. UNCLEAR and UNCATEGORIZED are the two largest 
classes and show significant growth over the one-year period, which might suggest 
that the feature difference is significant enough between the two ports that the model 
needs to be augmented with the alternative port data as well. We can observe much 
more significant proportion changes among the classes on the alternative port.
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FIGURE 5. DISTRIBUTION OF DEVICE CLASSES FOR PORT 8080 IN 2018 AND 2019.

The relative class distribution for all four classified data sets is presented in Figure 
6. This view enables us to make a comparison between the utilization of different 
devices on different ports. There are other discernible differences besides the already 
identified WEB, UNCATEGORIZED and UNCLEAR classes. INFRA devices are 
proportionally about four times less prevalent on the alternative port; this could be 
explained by the fact that there are a small number of manufacturers whose devices 
were identified and labelled on the port 80. These devices might use the default port 
setting, and there might be unidentified INFRA devices defaulting to 8080 port.

Interestingly, IPCAM has almost the same proportion across the ports with the same 
decrease over the one year. Proportionally, there are significantly more PRINTER 
devices on the alternative port, and that is explainable with the high variance of device 
models and default configurations even among individual manufacturers. VOIP, ICS, 
IOT and NET devices are also proportionally more represented on the alternative port. 
This might be the result of manufacturers’ concerns about creating port conflicts on a 
single device. This concern is especially valid for NET devices, which are handling 
networking traffic and possibly forwarding the port 80 to another device.
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FIGURE 6. PROPORTIONAL DISTRIBUTION OF DEVICES FOR PORT 80 AND 8080 IN 2018 AND 2019.

5. CONCLUSIONS

We have successfully trained a machine learning classifier for web interfaces achieving 
87% test accuracy without the use of a rule engine. Although using the full labelled 
set to train the neural network achieved higher test accuracy of 97%, further research 
is needed to determine if this higher accuracy can be achieved while avoiding the 
bias caused by an unbalanced data set. A large proportion of devices being classified 
as UNCLEAR and UNCATEGORIZED was unexpected but explainable and can be 
addressed through augmenting data with features from other protocols. Although 
the model for the standard port functioned for the alternative port, the increase in 
UNCLEAR and UNCATEGORIZED devices indicates that there might be a sufficient 
number of devices unique to the alternative port. This therefore requires the data from 
the alternative port to be included into the labelled training set or a separate model 
created.

Our future work will include augmenting the model with HTTPS web interfaces and 
additional common or high impact port checks and appropriate protocol communication 
responses. Reverse and forward DNS as an additional source of features could more 
precisely filter out WEB servers that are currently UNCATEGORIZED. Fingerprinting 
TCP communications as an additional feature is worthy of investigation as well. 
Redeveloping rules used for labelling the sample set into a rule engine should 
significantly increase the accuracy of the classification.
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This type of classifier could provide the full Internet view of the reachable devices, 
with details of individual countries and networks. It has significant value not only 
for research purposes but also to provide overview reports to decision-makers about 
which security concerns require the most attention. The same classifier can also be 
used for internal networks, by-passing firewall restrictions and classifying devices 
with open ports, thus competing with the observer approach.
The application of machine learning to various research problems is currently hard to 
replicate in most cases. We are planning to develop the classifier with the discussed 
improvements as an API available to researchers to help others to address a vast range 
of network-related research questions more precisely.
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