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Hacking the AI - the 
Next Generation of 
Hijacked Systems

Abstract: Within the next decade, the need for automation, intelligent data handling 
and pre-processing is expected to increase in order to cope with the vast amount of 
information generated by a heavily connected and digitalised world. Over the past 
decades, modern computer networks, infrastructures and digital devices have grown 
in both complexity and interconnectivity. Cyber security personnel protecting these 
assets have been confronted with increasing attack surfaces and advancing attack 
patterns. In order to manage this, cyber defence methods began to rely on automation 
and (artificial) intelligence supporting the work of humans. However, machine learning 
(ML) and artificial intelligence (AI) supported methods have not only been integrated 
in network monitoring and endpoint security products but are almost omnipresent in 
any application involving constant monitoring, complex or large volumes of data. 
Intelligent IDS, automated cyber defence, network monitoring and surveillance as 
well as secure software development and orchestration are all examples of assets that 
are reliant on ML and automation. These applications are of considerable interest to 
malicious actors due to their importance to society. Furthermore, ML and AI methods 
are also used in audio-visual systems utilised by digital assistants, autonomous 
vehicles, face-recognition applications and many others. Successful attack vectors 
targeting the AI of audio-visual systems have already been reported. These attacks 
range from requiring little technical knowledge to complex attacks hijacking the 
underlying AI.

With the increasing dependence of society on ML and AI, we must prepare for the 
next generation of cyber attacks being directed against these areas. Attacking a system 
through its learning and automation methods allows attackers to severely damage the 
system, while at the same time allowing them to operate covertly. The combination 

Kim Hartmann
Conflict Studies Research Centre
kim.hartmann@conflictstudies.org.uk

Christoph Steup
Anhalt University of Applied Sciences
christoph.steup@hs-anhalt.de 

2020 12th International Conference on Cyber Conflict
20/20 Vision: The Next Decade
T. Jančárková, L. Lindström, 
M. Signoretti, I. Tolga, G. Visky (Eds.)
2020 © NATO CCDCOE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal 
use within NATO and for personal or educational use when for non-profit or 
non-commercial purposes is granted providing that copies bear this notice 
and a full citation on the first page. Any other reproduction or transmission 
requires prior written permission by NATO CCDCOE.



328

1. INTRODUCTION

Artificial intelligence (AI) has been applied in many scenarios in recent years, and 
this technology is expected to establish itself in further fields over the next decade. 
Within the military sphere alone, AI technology is expected to penetrate into areas 
such as intelligence, surveillance, reconnaissance, logistics, cyberspace operations, 
information operations (the most prominent technology is currently “deepfakes”), 
command and control, semiautonomous and autonomous vehicles and autonomous 
weapon systems. Numerous reports and analyses suggest that an AI arms race has 
indeed already begun [1]. In addition to the military application scenarios, AI systems 
are also utilised in applications such as public security surveillance [2], financial 
markets [3], healthcare [4], Human-Computer and Human-Machine Interactions, 
cybersecurity, power grid management [5], autonomous driving and driver assistance 
systems. Any of the aforementioned application scenarios are of high value to civilian, 
governmental or military units and have a high significance to society. Therefore, 
these applications and the systems involved must be considered as highly valuable 
assets in cyberwarfare and protected accordingly. 

The security of AI systems is currently underrepresented in public discussions; 
however, reports on successful attacks on AI systems have emerged over the past 
couple of years. The utilised attack vectors range from requiring little technical 

of being inherently hidden through the manipulation made, its devastating impact 
and the wide unawareness of AI and ML vulnerabilities make attack vectors against 
AI and ML highly favourable for malicious operators. Furthermore, AI systems 
tend to be difficult to analyse post-incident as well as to monitor during operations. 
Discriminating a compromised from an uncompromised AI in real-time is still 
considered difficult.

In this paper, we report on the state of the art of attack patterns directed against AI 
and ML methods. We derive and discuss the attack surface of prominent learning 
mechanisms utilised in AI systems. We conclude with an analysis of the implications 
of AI and ML attacks for the next decade of cyber conflicts as well as mitigations 
strategies and their limitations. 
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expertise to attacks involving detailed knowledge of the underlying AI [6]. Reported 
results have ranged from the AI mistaking a turtle for a rifle, to making individuals 
undetectable to the system.

The penetration of AI throughout digital spaces is likely to increase even further over 
the next decade, as well as our reliance on its correct identification and reasoning 
abilities. AI is envisioned to outperform humans in most tasks involving processing 
large amounts of data/information, high precision or complex reasoning. It is assumed 
to deliver unbiased and rational results without interference from non-logical events 
or circumstances. This presumption renders hijacked AI systems an extremely 
dangerous threat to modern societies.

The wide-range of applications involving AI is startling, especially as AI has been 
regarded as being almost impossible to secure [7]. In December 2019, Microsoft 
published a series of materials on the topic, stating that “[i]n short, there is no common 
terminology today to discuss security threats to these systems and methods to mitigate 
them, and we hope these new materials will provide baseline language […]” [8]. 
Over the past decade, we have witnessed increasing and incautious utilisation of AI 
and ML techniques in applications whose correct functioning is crucial to modern 
societies. It is easy to imagine how any malfunctioning of these systems might have 
a devastating impact on civilian lives, financial markets, national security and even 
military operations. 

With society’s increasing dependence on ML and AI, we must prepare for the next 
generation of cyber attacks being directed against these systems. Attacking the system 
through its learning and automation methods allows the attackers to severely damage 
the system by altering its learning outcome, decision making, identification or final 
output. Furthermore, it is difficult to analyse AI systems post-incident and integrate 
real-time monitoring during their operation: much of the learning and reasoning is 
done in what is called a “hidden layer” and in its essence corresponding to a black 
box model. Therefore, the discrimination of a compromised from an uncompromised 
AI system in real-time is still considered very difficult. With its increasing utilisation 
in crucial application scenarios, the security of AI systems becomes indispensable.

Knowledge of AI systems’ vulnerabilities may also become of high importance to 
defensive cyber operations. During 2019, we witnessed increasing weaponisation 
of AI, often to create “deepfakes” – artificially generated or altered media material 
found to impose a sincere threat to democracies [9]. The uprising of deepfakes has 
encouraged the U.S. DARPA to spend $68 million on the identification of deepfakes 
over the past four years [10]. While it is of utmost importance to identify AI-supported 
disinformation campaigns, identification alone will not stop such operations. Offensive 
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technological knowledge of how to stop AI-supported attacks will become essential to 
establish and uphold cyber power in an ongoing AI arms race.

The aim of this paper is to foster understanding of the susceptibility of AI systems to 
cyber attacks, how incautious utilisation of AI and ML may make societies vulnerable, 
and to transfer the value of knowing AI-/ML-system vulnerabilities within the ongoing 
AI arms race. Attack surface modelling is a key contribution to assessing a target’s 
susceptibility to attacks. However, AI systems have several peculiarities, which must 
be addressed when deriving the attack surface. Within this article, attack surfaces of 
different AI systems are derived that consider systems’ data assets, processing units 
and known attack vectors, allowing us to understand these systems’ vulnerabilities. 
Furthermore, these attack surfaces must be discussed with the systems’ societal and 
economic impact in mind to allow strategic and policy recommendations. At the 
time of writing, neither the AI systems’ concrete attack surface definition nor the 
embedment of the different AI systems’ specific operational setup have been part of 
the security assessment of these systems. Allowing an AI-specific, concrete attack 
surface discussion, which includes the operational setup associated with the AI/ML 
method utilised by the system, is the main contribution of this article in addition to 
providing insights into the role of AI systems’ susceptibilities to cyber attacks in the 
next decade of cyber conflicts.

This paper will continue as follows: we start by giving a brief introduction to selected 
AI and ML methods currently deployed (section 2). We report on state of the art 
attack patterns directed against these systems and how it must be expected that these 
systems will become prominent targets over the next decade. We derive and discuss 
how attack surfaces may be modelled for AI systems (section 3). In section 4, we 
apply the previously derived attack surface model to AI systems utilising the different 
methods previously introduced in section 2 to compare their susceptibility to attacks. 
We conclude with an analysis of the implications of AI and ML attacks for the next 
generation of cyber conflicts and recent mitigation strategy attempts (section 5). 

2. AI AND ML METHODS

The field of artificial intelligence and especially the sub-field of machine learning 
is vast. Within the scope of this article, we consider some of the prominently 
utilised methods with cross-domain applications. Artificial Neural Networks 
(ANNs) describe the basic principles of neural networks and are commonly applied 
to predictive modelling problems involving the analysis and classification of non-
linear relationships within datasets. Convolutional Neural Networks (CNNs) are 
an adaptation of ANNs specifically designed to map image data to an output class. 
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CNNs are commonly applied in prediction problems involving data analyses. GANs 
(Generative Adversarial Neural Networks) have become publicly renowned through 
the emergence of “deepfakes”, which has yielded strong interest in deep learning 
methods. Opposing to the discriminative learning of ANNs and CNNs having a clear 
goal, generative modelling helps with understanding data and generating hypotheses. 
Support Vector Machines (SVM) were the standard solution to pattern recognition 
tasks prior to the emergence of neural networks and were used extensively in audio, 
video and handwriting recognition tasks.

In the next subsections, each of these will be explained briefly to allow for better 
understanding of security analysis of systems utilising these methods.

A. Artificial Neural Networks

FIGURE 1. EXAMPLARY ARTIFICAL NEURAL NETWORK (ANN). This network consists of three layers 
with a maximum width of the layers of two (corresponds to the amount of neurons in a single layer). The dots 
represent the neurons. The arrows from left to right indicate the data flow from the input on the left to the output 
on the right. The arrows from the top indicate the configuration of each neuron with weights, which were typically 
acquired using a training phase. The weight collection reflects the learning outcome.

ANNs provide an abstract replication of the processes existing in the human brain. 
These models consist of simple atomic components called neurons, which are very 
limited in their individual capabilities, but which may be combined to perform more 
complex tasks. ANNs usually do not incorporate any task-specific rules, but instead 
derive the correct output from examples. Similarly to the biological model that inspired 
ANNs, a simple neuron may only be able to decide if an input is above a certain 
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threshold or not. However, collectively, a circuit of multiple neurons is capable of 
performing much more complex tasks. As an example, given a set of panda pictures, 
the ANN is able to extract a pattern of these pandas. It learns the characteristics 
extracted from the examples given. The system utilising the ANN will then be able 
to evaluate any picture with regard to these characteristics, resulting in a “match” if 
a sufficient number of the characteristics are met and a “mismatch” otherwise. This 
is called classification. Some systems are also able to provide a confidence ratio for a 
performed classification. However, the correctness of the classification depends greatly 
on the amount and variance of the training data provided. In the above example, if the 
panda training set only contained pandas shown from behind, the system would not be 
certain of the correct classification of a panda shown from the front, or may mistake 
an advertising pillar with a poster of black and white dots for a panda. 

The peculiar strengths of ANNs are scalability and flexibility, achieved through 
the combination of multiple neurons. The computational capabilities are achieved 
through the vast connections between individual neurons. However, these multiple 
neurons artificially expand the “parameter space” – the space of all possible parameter 
combinations. Hence, the enhanced flexibility and scalability come at the price of 
larger training sets and higher computational power being necessary to make the 
neural network converge towards the correct solution.

B. Convolutional Neural Networks

FIGURE 2.  CNN INVOLVING A CONVOLUTIONAL AND DENSE LAYER. The left side shows the operations 
of the convolutional layers, which perform the data pre-processing and feature extraction through convolution. The 
right side depicts the dense layers’ operations that enable the CNN to classify the data based on the previously 
extracted features. In this example, a hyperplane is used for the classification.
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Convolutional Neural Networks (CNNs) belong to the class of “deep neural networks” 
(DNNs). DNNs are ANNs with multiple layers between the input and output layers. 
CNNs utilise two types of layers: convolutional layers and dense layers. Within the 
convolutional layers, each neuron processes only a small region of the input image. 
However, the regions are partially overlapping. This enables the network to exploit 
hierarchical patterns within the data and allows it to perform pre-processing and feature 
extractions. The dense layers are usually fully-connected ANNs used to identify 
patterns in the output of the convolutional layers. Dense layers are very powerful and 
induce a large parameter space due to the large amount of weights induced by the 
inter-neuron connections.  

Although the convolutional layers reduce the overall parameter space, typical 
object detection (image classification and localisation) CNNs, such as YOLO [11], 
still contain over 60 million parameters. Due to the size of the parameter space, 
comprehensive training datasets and computational power are needed to train the 
network sufficiently. Therefore, pre-trained networks are available that may be used 
and where only the final layers must be modified to adapt to an application specific 
classification. This process of using pre-trained models is called “transfer learning” 
and is widely used.

C. Generative Adversarial Networks

FIGURE 3. VISUALISATION OF A GAN. Internally, a GAN consists of two ANNs, the generator and the 
discriminator, which are trained within a competitive, internal process. The generative network synthesises 
artificial data from random input, while the discriminator attempts to distinguish real data from the synthetic data 
of the generator. The selector arbitrarily selects either real or generated data and forwards this to the discriminator. 
The result of the discriminator is evaluated against the truth given by the selector - the evaluations outcome is 
utilised to train the generator and discriminator. As a result, two ANNs are trained in parallel: one produces data 
similar to the training data while the other is capable of identifying synthesised data.
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Generative Adversarial Networks (GANs) have gained much attention during the last 
year due to their frequent utilisation in the creation of “deepfakes”. GANs consist of 
two competitive internal ANNs – the generator and the discriminator. These ANNs are 
trained in parallel in a competitive manner, which is often deployed as a zero sum or 
adversarial game. The discriminator tries to detect whether an input is originating from 
a training dataset or has been synthesised, while the generator generates adversarial 
samples to mislead the discriminator. 

As the competitive training automatically generates feedback information, GANs do 
not necessarily need labelled training data. However, in order to provide reasonable 
output, at least the discriminator should be pre-trained on labelled data. For the creation 
of deepfakes, conditional GANs (cGANs) are often used, which rely on labelled data 
to allow a target-oriented training.

D. Support Vector Machines

FIGURE 4. VISUALISATION OF AN EXAMPLE SVM. The SVM seperates two classes of data points (blue 
and white) through a hyperplane while maximising the margin between the hyperplane and the nearest data points. 
These data points are called support vectors.

Support Vector Machines (SVMs) utilise labelled data and machine learning 
algorithms to perform classification and regression analysis with the help of a 
separating hyperplane and cluster support vectors (see Figure 4). SVMs have played a 
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dominant role in AI systems prior to the rise of ANNs, especially in the fields of text 
classification and speech recognition. 

SVMs utilise mathematical concepts to define a separating hyperplane for a given set 
of data. Finding a separating hyperplane for a set of linearly separable clusters can be 
achieved through logistic regression. In order to understand non-linear relationships 
or solve higher-dimensional tasks, SVMs utilise “kernel tricks”. The results achieved 
by SVMs are considered to be trustworthy and robust. However, SVMs can only 
perform two-class classifications (i.e. the data can only be distinguished into two 
categories). If more than two classes exist, algorithms must be applied that reduce 
the multi-class problem to several two-class problems and SVMs must be trained and 
executed in parallel. This limitation originates from the definition of a hyperplane, 
which is utilised to separate two distinct clusters. However, choosing the hyperplane 
to have a maximum distance between itself and the data clusters yields an inherent 
robustness against noise.

Some of the drawbacks of SVMs are the limitation to two-class-problems, the 
complexity associated with reducing multi-class problems to concurrently executable 
two-class-problems, the utilisation of rather complex mathematical models of kernel-
functions, the necessity of labelled data input and difficulties associated with the 
model parameter interpretation (amongst others: finding the actual kernel function). 
However, SVMs are still used in various application scenarios stemming from the 
fields of data science, data analytics and business analytics.

3. ATTACK SURFACE

The security of AI systems and attacks directed against these systems are currently 
being neglected in public discussion, while the versatile utilisation of AI in varying 
application contexts is widely discussed. However, within the academic and technical 
communities, several techniques and attack vectors directed against AI systems and 
methods have been reported. 

Currently, the most prominent attack vector categories are [12]:

•	 Adversarial inputs;
•	 Data poisoning attacks;
•	 Model stealing techniques.

Further attack vectors that have been identified are: model poisoning [13], model 
and data theft [14], data leakage [15] and neural network trojans [16]. Attack vectors 
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directed against the AI systems’ deployment or training environment are equally 
applicable. These may be attack vectors directed against servers, databases, protocols 
or libraries utilised within the AI system. In order to allow a discussion of the 
vulnerabilities of AI systems, a common understanding of its attack surface must be 
achieved.

An attack surface allows analysts to depict the means by which an attacker may 
enter, extract data or manipulate the system in question. It is usually performed on 
software components, applications or networks in order to understand, assess and 
manage security risks during the design and development phase. Attack surfaces are 
usually designed to depict threats to a specific component or application (i.e. ignoring 
operators or system security issues) that stem from an outsider. However, the concept 
is also applicable to evaluate exposure to internal attacks [17]. Knowledge of the 
attack surface is invaluable in order to understand the correlations between exposure, 
risk and vulnerabilities [18].

A recent report of the Transatlantic Cyber Forum provided a generic, abstract attack 
surface claiming to cover any ML methods [19]. Opposing the attack surface derived 
in the aforementioned report, we will follow the OWASP guidelines on attack surface 
modelling, which yields an abstract yet more concrete attack surface to specific AI 
systems.

Currently, AI systems often lack sufficient security evaluations [20]. This may be a  
result of the mutually independent development of AI methods and their implemen-
tation in applications: while the application should have a security evaluation, the 
incorporated AI (utilised by the application through APIs or frameworks) is rarely 
considered in terms of its security vulnerabilities by the application developers. While 
the AI framework developers may follow coding standards and guidelines for secure 
software development, they will not evaluate the potential attack surface of an AI 
system utilising the framework.

As AI is expected to become ubiquitous over the next decade, the importance of 
understanding the vulnerabilities of AI systems and methods becomes clear. Within 
the following subsections, we define how attack surface modelling for AI systems 
should be done to include the peculiarities of these systems. 

A. Data Assets
The attack surface provides information of possible entry points for an attacker as 
well as exit points allowing access to the systems’ data. It is the result of all possible 
attack vectors against a system or component. 
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AI systems are data-driven systems that strongly depend on the data quality, 
authenticity and availability. Hence, data security is of particular relevance when 
assessing the attack surface of an AI system. Data security is usually evaluated by 
assessing the input validation, security at rest and security in transition. Assessing 
these three involves an evaluation of the impact of an attack and its likelihood of 
occurring. Several attack vectors directed against specific data assets in AI systems 
have been described (see according subsection of section 4). In addition to the AI/
ML specific attack vectors, there have been reports of attacks directed against the 
databases holding the data assets, yielding data disclosures [21]. 

The impact of data alterations depends on the AI and ML methods used. Reports of 
minor alterations yielding majorly false classification with enormous effects in AI 
systems have been reported [22], while at the same time, some systems are almost 
ignorant to changes. Overall, the usage of sparse datasets renders the AI prone to 
adversarial attacks after training [23].

Furthermore, it must be recalled that for modern applications, the AI system is likely 
to be developed to enable concurrent processing – especially when processing large or 
complex data, as is the case in most AI application scenarios. A concurrent operation 
on data assets, however, implies the necessity for data management. The concurrent 
operation may either be achieved through shared databases or distributed data.

Using a database requires separate securing of that database, especially when utilising 
distributed and parallel computing, as the database will be addressable (through the 
TCP/IP stack) for external requests. 

Allowing distributed data implies that the data must be kept consistent throughout 
the system processing entities. This is usually done by a periodic or event-triggered 
merging of the distributed data assets, where the data is collected from all entities. 
This requires authenticity of the entities involved and methods to ensure that no 
manipulation of the data can be performed during transportation (man-in-the-middle 
attacks).

B. Processing Units
Processing units within AI systems are units that are directly involved in the learning 
process, the data gathering or the decision making. While some attacks against the 
processing units will utilise data to perform the attack, other attack vectors may 
deploy techniques directed against the application involved (e.g. a web crawler used 
for data gathering is susceptible to web application vulnerabilities), the process itself 
or the libraries used. 
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A specific type of attack combines the use of poisoned data and known vulnerabilities 
in the processing entities [24]. Previous attacks of this type have used audio/video 
files to hide malicious background operations in a steganographic manner to allow 
for the execution of arbitrary code. While initially considered as an attack against a 
specific media player, this attack utilised a meta language library vulnerability. This 
attack vector could have affected other applications calling the library equally, such 
as AI systems processing a manipulated file.

4. AI SYSTEM VULNERABILITIES

Within this section, we will use the attack surface considerations made in section 3 to 
define the attack surface of AI systems deploying the AI and ML methods discussed 
in section 2. Following the OWASP guidelines on attack surface assessments, we 
identify entry and exit points and briefly discuss reported and plausible attack vectors. 
As there are some similarities regarding the attack surfaces of ANNs, CNNs and 
GANs, a full explanation of an identified attack vector is given at its first encounter 
only. The summarising conclusion of the findings below is embedded in the overall 
conclusion and outlook of this paper and given in section 5. 

A. ANNs

FIGURE 5. A CLASSIFICATION APPLICATION UTILISING A GENERIC ANN. The incoming data is 
preprocessed (reduce noise/selection of relevant material) and features are extracted. The data is labelled manually 
or automatically during the preprocessing. The weights of the network are adapted during the training. The final 
classification uses the weights derived during the training.
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Looking at the overview given in Figure 5, the following attack surface points and 
associated vulnerabilities are identifiable:

•	 Crawler/Input – Entry point
	 Risk of introducing unscrutinised data, data corruption and poisoning attacks. 

Crawlers working in a web context are web applications and susceptible to 
common web application vulnerabilities [25].

•	 Labelling – Entry point, two cases to be considered:
	 Manual annotation: consideration of annotation tool vulnerabilities [26], 

unscrutinised data and data corruption.
	 Automatic: Meta-data derived from external sources may contain malicious 

code, unscrutinised data, data corruption, poisoning attacks. 
	 Both: Attacks targeting the interface between annotation tool and ANN or 

targeting the functions involved in the import of the labelled data.
•	 Pre-processing unit – Implementation dependent, entry/exit point 
	 Operation on unscrutinised data, library vulnerabilities.
•	 Feature extraction – Implementation dependent, entry/exit point 
	 Operation on unscrutinised data, library vulnerabilities, database and import 

function vulnerabilities.
•	 Classifier – Exit point 
	 May impose threats to the overall application if data authenticity and access 

authorisation are not secured. 
•	 Weights – Exit point (training); Entry point (shared weights → transfer 

learning) 
	 Authenticity of weights must be guaranteed.
	 Access should be restricted to prevent theft or leakage.
	 Database: database and import vulnerabilities apply.
	 Volatile memory only: attack patterns against volatile memory apply.
	 Shared weights: Transfer learning associated attack patterns such as NN 

trojans, unscrutinised data, poisoning attacks.

ANNs work with sensitive data assets. These must be protected to ensure the correctness 
and authenticity of the AI’s output, as well as due to privacy considerations. The data 
assets found in AI systems utilising ANNs are:

•	 The data gathered itself;
•	 Labelled data [27] (backdoor triggers/poised data);
•	 Extracted features;
•	 Weights - Reports on volatile memory attacks exist [28], external weights 

obtained through model sharing may lead to trojan injections in NNs [29]; 
•	 Classification output.
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Due to a lack of sufficient metrics for AI attack surfaces, it is difficult to derive a 
quantified and comparable assessment of the attack surface. However, it is observable 
that ANNs have a comparably large attack surface. The possibility of incorporating 
applications for the data gathering and annotation expand this attack surface even 
further. Overall, ANNs appear highly susceptible to a variety of cybersecurity attacks 
due to their complex nature of internal processing units and their frequent import/
export of data requiring long-term storage. 

When considering the security of the data assets, one must recall that the 
implementation is likely to allow concurrent processing. This implies the necessity for 
data management, which may either be solved through shared databases or complex 
merging strategies for distributed data. Both solutions imply specific attack vectors 
being utilisable – see section 3. A.

The application of transfer learning expands the attack surface even further, as another 
entry point within the ANN is established. 

The above considerations provide insights into the efforts needed to secure applications 
utilising ANNs. The overall impression is that – without sufficient precautions being 
made – the attack surface of systems utilising ANNs is vast. Given the numerous 
reports of attack patterns directed against ANNs, this assessment appears reasonable.

B. CNNs

FIGURE 6. EXAMPLE APPLICATION UTILISING A CNN. CNNs may depict larger and more complex 
models as they do not have the common parameter space increase witnessed in ANNs. Pre-processing and feature 
extraction are performed by the CNN internally.
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Figure 6 depicts an overview of a CNN in an abstract application context. The 
following attack surface points are identifiable:

•	 Crawler/Input – Entry point 
	 Susceptible to unscrutinised data, data corruption and poisoning attacks. 
	 Possibly susceptible to common (web) application vulnerabilities. 
•	 Labelling – Entry point
	 Manual annotation: Annotation tool vulnerabilities, unscrutinised data and 

data corruption.
	 Automatic: Malicious meta-data, unscrutinised data, data corruption 

and poisoning attacks. Attacks directed against the interface between the 
annotation tool and the CNN (manual annotation) or against the data import 
of the labelled data from memory to CNN.

•	 Weights – Exit point (training); Entry point (shared weights, transfer 
learning)

	 Authenticity of weights must be guaranteed.
	 Access should be restricted to prevent theft or leakage.
	 Database: database and import vulnerabilities apply.
	 Volatile memory only: attack patterns against volatile memory apply.
	 Shared weights: Due to the common utilisation of transfer learning, CNNs 

are particularly vulnerable to attack vectors utilising this method: Usage 
of externally trained weights for the CNN network may introduce logic 
bombs into the network [30]. This threat is hard to mitigate as it is difficult 
to anticipate the behaviour of CNNs based on the weights alone. The only 
option is to rigorously test the network with labelled data. Furthermore, 
NN trojans, unscrutinised data and poisoning attacks are plausible attack 
vectors.

CNNs work with sensitive data assets, these are:

•	 The data gathered itself;
•	 Labelled data;
•	 Weights derived from training or through transfer learning;
•	 Classification results.

Within CNNs, the pre-processing and feature extraction are part of the network and 
not performed by separate application entities. Therefore, the data quality for CNN 
applications is of higher importance than for systems utilising ANNs.
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In addition to the above, further attack vectors on CNNs have been reported, amongst 
others utilising evolutionary computing methods, evasion attacks and side-channel 
attacks on CNN FPGA accelerators [31].

C. GANs

FIGURE 7. AN EXEMPLARY GAN APPLICATION SYSTEM. The GAN is used to enhance the training of an 
already existing CNN (Discriminator CNN) for classification purposes. The Generator CNN creates additional 
training samples which are aimed to throw off the classification. The resulting Discriminator CNN after training is 
in general more robust against adversarial samples then the original one.

The attack surface is given by the systems entry/exit points, which are:

•	 Crawler/Input – Entry point
	 See considerations in sections 4. A and B. However, for unconditional 

GANs such as the one shown in Figure 7, data integrity and authenticity 
is even more important, as no additional labels are used for the generative 
network. Therefore, all data points are equally important. Modification of 
the stochastic distribution of data may modify the behaviour of the whole 
GAN. The result is highly dependent on the used input data and appropriate 
training parameters [32].

•	 Weights – Exit point (training), entry point (training, shared weights, transfer 
learning)

	 Within GANs, the weights may serve as exit and entry points.



343

	 Import/Export may be vulnerable to attacks on the interface or database 
used. Transfer learning is commonly used in GANs – implying GAN-based 
systems to be vulnerable to transfer learning attacks.

•	 Noise generator – (Hidden) Entry point
	 The stochastic distribution of the random input used by the generator is 

crucial for the correct behaviour of the GAN. If the distribution is biased 
towards certain values, this will affect the training of both networks and may 
create blind spots as some data values are never generated and, therefore, the 
discriminator is not trained on them.

•	 Selector – (Hidden) Entry/exit point
	 Attacks against the selector may yield a modification of the data passed. 

Furthermore, the selection process may be biased, yielding negative training 
outcomes due to an overrepresentation of real data (disabling the generator 
training) or an overrepresentation of artificial data (overfitting of the 
discriminator).

•	 Labelling – Entry point
	 The shown unconditional GAN does not need labelled data, therefore this 

entry point is only present in conditional GANs. Similar to CNNs, modifying 
labels may negatively impact training of the discriminator. By changing 
labels of a specific class only, this class can be removed from the GAN 
altogether, preventing the generator from producing appropriate data points 
and also preventing the discriminator from classifying them.

Due to their composition of two CNNs operating in parallel, GANs have the same 
type of sensitive data assets as CNNs. Depending on the type of GAN (conditional 
or unconditional) labels may be present in the data (or not) and must be considered 
accordingly when defining the attack surface.

Most reported attacks on GANs try to reconstruct the used training data from the final 
model, which is called member inference attack [33]. These models can be used to 
generate adversarial attacks on other ML methods and also to protect them from such 
attacks [34].
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D. SVMs

FIGURE 8. SVM APPLICATION SEPARATING LABELLED DATA INTO TWO CLASSES. Similarly to the 
ANNs discussed previously, pre-processing and feature extraction are performed separately from the training. The 
training is performed through mathematical optimisation. The SVM is executed after the training.

The following attack surface points are derivable: 

•	 Crawler / Input – Entry point
	 Unscrutinised data, data corruption and poisoning attacks. 
	 However, in contrast to ANNs, only a small fraction of the data defines 

the output. These are the support vectors identified during the training. 
Therefore, adversarial support vectors may heavily influence the resulting 
classification [35]. This type of poisoning attack is even possible in online 
learning environments where the SVM is continuously updated with new 
data [36]. Another approach uses poisoned data to prevent the training from 
converging through the introduction of artificially large training errors [37]. 
This can be used in online learning to prevent the system from updating the 
SVM.

•	 Weights – Entry point 
	 SVMs store a single weight per data point trained. Any data point that is not 

a support vector has a weight of zero. Weight modifications may therefore 
drastically change the output classification as it may alter the support vector 
identification. This allows for arbitrary output classification.
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•	 Feature Storage – Entry/Exit point
	 As the SVM is executed post-training and after the processing of the data 

input, it is dependent on accessing the data derived during these steps. 
Therefore, the feature storage is of particular importance to SVMs. An 
attack vector utilising this vulnerability is called the “label flip”-attack. It 
allows an attacker to change the label assigned to a support vector in order 
to change the final classification [38]. 

•	 Pre-processing and Feature Extraction – Entry points 
	 Data corruption and injection of malicious code in meta-data may enable an 

attacker to gain access to the system.

SVMs work on the following sensitive data assets:

•	 Raw data gathered;
•	 Pre-processed data;
•	 Features extracted;
•	 Labelled data;
•	 Weights derived – considered as the most important data points and features 

[39]; 
•	 Classification.

5. CONCLUSION AND OUTLOOK

Summarising the above findings and discussions, the combination of being inherently 
covert, their devastating impact on society and the wide unawareness of AI and 
ML vulnerabilities make attack vectors against these systems highly favourable for 
malicious cyber operators. Such attacks have already been witnessed and are being 
discussed in technical and academic communities but have not yet reached the public 
sphere, nor are application developers aware of the risk imposed by the utilisation of 
AI.

Despite the analyses presented in section 4, it remains difficult to provide a 
vulnerability hierarchy of the methods investigated regarding their susceptibility 
to cyber attacks. While some entry/exit points are easier to attack, others are only 
accessible with insider knowledge. The impact of the attack varies greatly with the 
data assets targeted and the specific method used. Using a preliminary approach to 
derive a quantifiable hierarchy based on the number of possible entry/exit points, 
one may observe that the number of entry/exit points is lowest in CNNs, followed 
by GANs and ANNs. SVMs have the same amount of identified entry/exit points as 
GANs. However, for AI systems, the mere number of entry/exit points is not a good 
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measure of the susceptibility of the technology investigated. It appears that each of 
the AI/ML methods investigated have specific high-value data assets, which make the 
system vulnerable through a combination of the data asset and a specific trait or process 
utilised. As an example, SVMs are highly sensitive to support vector manipulations, 
while GANs are exceptionally vulnerable to transfer learning attacks. The likelihood 
of successfully manipulating, destroying or obtaining these specific assets, traits or 
processes appears to give a more reliable assessment of the susceptibility than merely 
counting the overall number of access points. This is due to the fact that not all assets 
are equally important for the system to uphold its function, nor do all assets allow 
manipulation by an attacker or interact with the system.

In conclusion, it must be noted that AI systems are indeed susceptible to cyber attacks 
and that the utilisation of AI or ML methods increases any applications’ vulnerability. 
This necessitates more sensitive use of AI and ML methods in security- or safety-
sensitive applications. 

Defining the attack surface of AI systems has provided information that requires 
further interpretation to derive the application specific risk of utilising AI/ML in the 
application context. Currently, only a few reports exist on attack surface metrics [40], 
and these are not specific to AI systems. We have seen that these systems cannot 
be analysed by solely investigating attack surfaces, but that the internal processing 
discloses particular weaknesses that are a result of the data assets used and the 
characteristics and processes of the methods used. Recent attacks against AI systems 
have shown that vulnerabilities are a result of the combination of particular AI 
architectures, the methods used, implementation decisions (data sharing, framework 
and library choices) as well as the data processing, storage and handling itself.

In order to enhance the security of AI systems, a common language to discuss the 
vulnerability of such systems must be installed. Furthermore, methods to reliably 
quantify systems’ susceptibility to cyber attacks must be developed.  

Policy considerations being driven by the AI community show that the need to 
harden AI systems against manipulations and attacks has been acknowledged within 
academic communities. Preliminary results from within the EU have been achieved 
by the Fraunhofer IAIS and the University of Bonn, who cooperated with the German 
Federal Office for Information Security to define a certification standard for AI, 
including security considerations. These results follow the EU AI HLEG and the EU 
AI Alliance working on the European Strategy on Artificial Intelligence.

Given the anticipated ubiquitous utilisation of AI and ML in applications over the next 
decade, the already existing diversity of attack vectors and the current inferiority of 
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countermeasures is alarming. The defence of AI systems is yet at its beginning and 
requires further investigation into the specific vulnerabilities of these systems [41]. 
Furthermore, knowledge of AI systems’ vulnerabilities may become crucial to defend 
against cyber operations which are being carried out with the aid of AI. Such operations 
are currently described in modern disinformation campaigns, as well as in information 
and hybrid warfare with only limited countermeasures currently available. In the 
context of political challenges and the ongoing AI arms race, a profound knowledge 
of AI systems’ vulnerabilities must be established to uphold cyber sovereignty.

REFERENCES 

[1]	 Tom Simonite, “For Superpowers, Artificial Intelligence Fuels New Global Arms Race”, 9 August 
2017, https://www.wired.com/story/for-superpowers-artificial-intelligence-fuels-new-global-arms-race/; 
Catherine Clifford, “In the same way there was a nuclear arms race, there will be a race to build A.I., says 
tech exec”, Interview with Hootsuite CEO Ryan Holmes on AI arms race, 29 September 2017, https://
www.cnbc.com/2017/09/28/hootsuite-ceo-next-version-of-arms-race-will-be-a-race-to-build-ai.html.  

[2]	 Steven Feldstein, “The Global Expansion of AI Surveillance”, Carnegie Endowment for International 
Peace - Paper, 17 September 2019, https://carnegieendowment.org/2019/09/17/global-expansion-of-ai-
surveillance-pub-79847; Bruce Schneier, “AI Has Made Video Surveillance Automated and Terrifying”, 
Motherboard - Tech by Vice, 13 June 2019, https://www.vice.com/en_us/article/bj93z5/ai-has-made-video-
surveillance-automated-and-terrifying.

[3]	 Jun Wu, “Artificial Intelligence and The Trader”, towardsdatascience.com, 28 May 2019, https://
towardsdatascience.com/artificial-intelligence-and-the-trader-500745011f53; Mike Thomas, “How AI 
Trading Technology is Making Stock Market Investors Smarter — and Richer - AI Trading: 17 Companies 
Changing The Stock Market”, builtin.com, 16 March 2019, https://builtin.com/artificial-intelligence/ai-
trading-stock-market-tech.

[4]	 Sam Daley, “Surgical robots, new medicines and better care: 32 examples of AI in healthcare”, builtin.
com, 23 September 2019, https://builtin.com/artificial-intelligence/artificial-intelligence-healthcare. 

[5]	 Sandra Ponce de Leon, Cognitive World, “The Role Of Smart Grids And AI In The Race To Zero 
Emissions”, Forbes, 20 March 2019, https://www.forbes.com/sites/cognitiveworld/2019/03/20/the-role-of-
smart-grids-and-ai-in-the-race-to-zero-emissions/#b5a97221c8e3.

[6]	 “Computer Vision (CV) dazzle” has been inspired from dazzle camouflage used by warships in World War 
I and involves make-up, haircut or infrared lights to distract automated facial recognition. Further reading: 
Elise Thomas, “How to hack your face to dodge the rise of facial recognition tech”, Wired Magazine, 1 
February 2019, https://www.wired.co.uk/article/avoid-facial-recognition-software; Samantha Cole, “This 
Trippy T-Shirt Makes You Invisible to AI”, Vice Tech, 5 November 2019, https://www.vice.com/en_us/
article/evj9bm/adversarial-design-shirt-makes-you-invisible-to-ai; Jonathan Vanian, “Why Google’s 
Artificial Intelligence Confused a Turtle for a Rifle”, fortune.com, 8 November 2017, https://fortune.
com/2017/11/08/google-artificial-intelligence-turtle-rifle/. 

[7]	 Assim Rais Siddiqui, “5 Security Measures for Verified Artificial Intelligence - Find out how to ensure a 
secure and trusted AI system for your business”, business.com, 26 August 2019, https://www.business.
com/articles/security-measures-verified-artificial-intelligence/.

[8]	 Valecia Maclin, “Solving the challenge of securing AI and machine learning systems”, Microsoft Blog, 6 
December 2019, https://blogs.microsoft.com/on-the-issues/2019/12/06/ai-machine-learning-security/. 

[9]	 Keir Giles, Kim Hartmann, Munira Mustaffa, “The Role of Deepfakes in Malign Influence Campaigns”, 
NATO StratCom COE, ISBN 978-9934-564-50-5, September 2019, https://www.stratcomcoe.org/role-
deepfakes-malign-influence-campaigns.

[10]	 Stephanie Kampf, Mark Kelley, “A new ‘arms race’: How the U.S. military is spending millions to fight 
fake images”, CBC.ca, 18 November 2018, https://www.cbc.ca/news/technology/fighting-fake-images-
military-1.4905775.

[11]	 Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, “You only look once: Unified, real-time 
object detection”, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las 
Vegas, NV, USA, 2016, pp. 779-788, https://doi.org/10.1109/CVPR.2016.91.



348

[12]	 Elie Bursztein, Security and Anti-Abuse Research Lead at Google, “Attacks against machine learning — 
an overview” Personal Site and Blog featuresing blog posts, publications and talks, May 2018, https://elie.
net/blog/ai/attacks-against-machine-learning-an-overview/.

[13]	 Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, Seraphin B. Calo, “Analyzing Federated 
Learning through an Adversarial Lens”, Proceedings of the 36th International Conference on Machine 
Learning, PMLR 97:634-643, 2019, http://proceedings.mlr.press/v97/bhagoji19a.html.

[14]	 Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, Thomas Ristenpart, “Stealing Machine Learning 
Models via Prediction APIs”, Proceedings of the 25th USENIX Security Symposium, August 2016, ISBN: 
978-1-931971-32-4, https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_tramer.
pdf; Itay Mosafi; Eli Omid David; Nathan S. Netanyahu, “Stealing Knowledge from Protected Deep 
Neural Networks Using Composite Unlabeled Data”, Proceedings of 2019 International Joint Conference 
on Neural Networks (IJCNN), IEEE, July 2019, https://ieeexplore.ieee.org/abstract/document/8851798.

[15]	 Taylor Larsen, “Data leakage in healthcare machine learning”, healthcare.ai, obtained 7 January 2020, 
https://healthcare.ai/data-leakage-in-healthcare-machine-learning/; Jason Brownlee,“Data Leakage in 
Machine Learning”, machinelearningmastery.com, 2 August 2016, https://machinelearningmastery.com/
data-leakage-machine-learning/. 

[16]	 Yu Ji, Zixin Liu, Xing Hu, Peiqi Wang, Youhui Zhang, “Programmable Neural Network Trojan for Pre-
Trained Feature Extractor”, arXiv.com, 23 January 2019, https://arxiv.org/abs/1901.07766v1; Yingqi Liu, 
Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang, “Trojaning 
Attack on Neural Networks”, Purdue University - Department of Computer Science Technical Reports, 
Paper 1781, 2017, https://docs.lib.purdue.edu/cstech/1781.

[17]	 OWASP Foundation, “Attack Surface Analysis”, OWASP Cheatsheet Series, obtained 7 January 2020, 
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html.

[18]	 Lily Hay Newman, “Hacker Lexicon: What Is an Attack Surface?”, wired.com, 3 December 2017, https://
www.wired.com/2017/03/hacker-lexicon-attack-surface/. 

[19]	 Sven Herping, “Securing Artificial Intelligence – Part I”, October 2019, https://www.stiftung-nv.de/sites/
default/files/securing_artificial_intelligence.pdf .

[20]	 Dana Neustadter, “Why AI Needs Security”, Synopsys Technical Bulletin, obtained 7 January 2020, 
https://www.synopsys.com/designware-ip/technical-bulletin/why-ai-needs-security-dwtb-q318.html; 
Alexander Polyakov, “AI Security and Adversarial Machine Learning 101”, towardsdatascience.com, 23 
July 2019, https://towardsdatascience.com/ai-and-ml-security-101-6af8026675ff. 

[21]	 Jeffrey Ding, “ChinAI #47: The Sensenet Data Leak - What Actually Happened”, 25 March 2019, https://
chinai.substack.com/p/chinai-47-the-sensenet-data-leak.

[22]	 BBC Technology, “AI image recognition fooled by single pixel change”, 3 November 2017, https://www.
bbc.com/news/technology-41845878. 

[23]	 Eykholt, Kevin, et al. “Robust physical-world attacks on deep learning visual classification, in 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018, 
pp. 1625-1634, https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00175.

[24]	 Savia Lobo, “VLC media player affected by a major vulnerability in a 3rd library, libebml; updating to the 
latest version may help”, hub.packtpub.com,25 July 2019, https://hub.packtpub.com/vlc-media-player-
affected-by-a-major-vulnerability-in-a-3rd-library-libebml-updating-to-the-latest-version-may-help/: 
CVE-2019-13615 Details, NIST National Vulnerabilities Database, 16 July 2019, https://nvd.nist.gov/vuln/
detail/CVE-2019-13615. 

[25]	 OWASP Foundation, “Web Application Security Guidance”, obtained 8 January 2020, https://www.
owasp.org/index.php/Web_Application_Security_Guidance; OWASP, “OWASP Top 10 Most Critical Web 
Application Security Risks”, OWASP Top Ten Project, obtained 8 January 2020, https://www.owasp.org/
index.php/Category:OWASP_Top_Ten_Project.

[26]	 OWASP Foundation, “Application Security Verification Standard 4.0”, March 2019, https://www.owasp.
org/images/d/d4/OWASP_Application_Security_Verification_Standard_4.0-en.pdf. 

[27]	 Duke University Press Release, “Detecting backdoor attacks on artificial neural networks”, 23 December 
2019, https://ece.duke.edu/about/news/detecting-backdoor-attacks-artificial-neural-networks. 

[28]	 Adnan Siraj Rakin, Zhezhi He, Deliang Fan, “Bit-Flip Attack: Crushing Neural Network with Progressive 
Bit Search”, arXiv.com, 7 April 2019, https://arxiv.org/abs/1903.12269. 

[29]	 Zhaoyuan Yang, Naresh Iyer, Johan Reimann, Nurali Virani, “Design of intentional backdoors in sequential 
models”, arXiv.com, 26 February 2019, https://arxiv.org/abs/1902.09972.

[30]	 Gu, Tianyu, Brendan Dolan-Gavitt, and Siddharth Garg, “Badnets: Identifying vulnerabilities in the 
machine learning model supply chain”, arXiv preprint arXiv:1708.06733 (2017).



349

[31]	 Jiawei Su, Danilo Vasconcellos Vargas, Kouichi Sakurai, “Attacking convolutional neural network using 
differential evolution”, IPSJ Transactions on Computer Vision and Applications issue 11, 22 February 
2019, https://link.springer.com/article/10.1186/s41074-019-0053-3; Ya-guan Qian, Dan-feng Ma, Bin 
Wang, Jun Pan, Jia-min Wang, Jian-hai Chen, Wu-jie Zhou, Jing-sheng Lei, “Spot Evasion Attacks: 
Adversarial Examples for License Plate Recognition Systems with Convolutional Neural Networks”, 
arXiv.com, 28 November 2019, https://arxiv.org/abs/1911.00927; Joao Gomes, “Adversarial Attacks 
and Defences for Convolutional Neural Networks”, medium.com, 16 January 2018, https://medium.
com/onfido-tech/adversarial-attacks-and-defences-for-convolutional-neural-networks-66915ece52e7; 
Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, Qiang Xu, “I Know What You See: Power Side-Channel 
Attack on Convolutional Neural Network Accelerators”, in ACSAC ‘18: Proceedings of the 34th 
Annual Computer Security Applications Conference, 393–406, December 2018, https://dl.acm.org/
doi/10.1145/3274694.3274696.

[32]	 A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta and A. A. Bharath, “Generative 
Adversarial Networks: An Overview,” in IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53-65, Jan. 
2018.

[33]	 Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro, “LOGAN: Membership inference 
attacks against generative models”, in Proceedings on Privacy Enhancing Technologies 2019, 1, pp. 133-
152; Dingfan Chen, Ning Yu,Yang Zhang, Mario Fritz, “Gan-leaks: A taxonomy of membership inference 
attacks against gans”, arXiv preprint arXiv:1909.03935, 2019. 

[34]	 Samangouei, Pouya, Maya Kabkab, and Rama Chellappa. “Defense-gan: Protecting classifiers against 
adversarial attacks using generative models”, arXiv preprint arXiv:1805.06605, 2018.

[35]	 Wang, Baoyao, Peidong Zhu, Yingwen Chen, Peng Xun, and Zhenyu Zhang, “False Data Injection Attack 
Based on Hyperplane Migration of Support Vector Machine in Transmission Network of the Smart Grid”, 
Symmetry 2018, 10(5), 165, https://doi.org/10.3390/sym10050165.

[36]	 Xiaojun Lin and Patrick P. K. Chan, “Causative attack to Incremental Support Vector Machine”, 
Proceedings of 2014 International Conference on Machine Learning and Cybernetics, IEEE, July 2014, 
https://doi.org/10.1109/ICMLC.2014.7009106.

[37]	 Battista Biggio, Blaine Nelson, and Pavel Laskov, “Poisoning Attacks against Support Vector Machines”, 
in Proceedings of the 29th International Conference on Machine Learning, 25 March 2013, https://arxiv.
org/pdf/1206.6389.pdf. 

[38]	 Han Xiao, Huang Xiao, and Claudia Eckert, “Adversarial Label Flips Attack on Support Vector Machines”, 
in Proceedings of the 20th European Conference on Artificial Intelligence (ECAI), August 2018; Ambra 
Demontis, Battista Biggio, Giorgio Fumera, Giorgio Giacinto, Fabio Roli, “Infinity-norm Support Vector 
Machines against Adversarial Label Contamination”, in Proceedings of the 1st Italian Conference on 
Cybersecurity (ITASEC17), 2017, http://ceur-ws.org/Vol-1816/paper-11.pdf.

[39]	 Battista Biggio, Igino Corona, Blaine Nelson, Benjamin IP Rubinstein, Davide Maiorca, Giorgio 
Fumera, Giorgio Giacinto, Fabio Roli, “Security evaluation of support vector machines in adversarial 
environments”, Support Vector Machines Applications, pp. 105-153. Springer, Cham, 2014, https://arxiv.
org/pdf/1401.7727.pdf. 

[40]	 Pratyusa K. Manadhata, Jeannette M. Wing, “An Attack Surface Metric”, IEEE Transactions on Software 
Engineering (Volume: 37, Issue: 3), May-June 2011, https://doi.org/10.1109/TSE.2010.60.

[41]	 Adam Hadhazy, “Protecting smart machines from smart attacks”, Princeton Office of Engineering 
Communications, 14 October 2019, https://www.princeton.edu/news/2019/10/14/adversarial-machine-
learning-artificial-intelligence-comes-new-types-attacks, quote from the text: “If machine learning is the 
software of the future, we’re at a very basic starting point for securing it” – Prateek Mittal, lead researcher 
and an associate professor in the Department of Electrical Engineering at Princeton.




