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Recent Developments 
in Cryptography

Abstract: In this short note, we briefly describe cryptosystems that are believed 
to be quantum-resistant and focus on isogeny-based cryptosystems. Recent SIDH 
(Supersingular Isogeny Diffie-Hellman) developments have focused on (2,2)-reducible 
Jacobians, where addition is executed via the Kummer surface. While elliptic curve 
isogenies are easy, explicit, and fast to compute thanks to Velús formulas, this is not 
the case for higher genus curves. The case of (2,2)-isogenies in genus 2 curves are an 
exception thanks to the work of Richelot. In addition, some explicit work has been 
completed in the case of (3,3) and (5,5)-isogenies, which are much more complicated 
than the case of Richelot isogenies. In this paper, we further investigate the case of 
(4,4)-reducible Jacobians and explicitly compute the locus ℒ4.
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1. Introduction

Quantum computers are powerful machines that take a new approach to processing 
information and may lead to revolutionary breakthroughs in a variety of areas to include 
artificial intelligence, drug discovery, materials science, and optimization of complex 
man-made systems. While increased computational power, such as that offered by 
quantum computers, can be used for good, these advances do present a threat to public 
key cryptography. Public key cryptography, and cryptography in general, rely on 
computational hard or expensive problems. Problems that were extremely hard when 
only equipped with a pencil and paper are now easily solved with a classical computer. 
While hard problems for classical computing, like the discrete log problem, ensure 
the strength of today’s current public key cryptography, new quantum algorithms 
can address these hard problems in polynomial time. Peter Shor, in his paper [37], 
provided an algorithm to solve the discrete log problem, demonstrating how to use a 
quantum computer to factor a positive odd integer. With the advent of these quantum 
algorithms, an adversary could efficiently break the universally adopted public-key 
cryptographic schemes (e.g. RSA, DSA and elliptic-curve cryptography).

In order to mitigate against this imminent threat, cryptographic schemes that are 
resistant to increased computing power offered by quantum computers have drawn 
great attention from both academia and industry. These schemes are collectively 
referred to as post-quantum cryptography (PQC). Whereas some cryptographic 
schemes will be rendered obsolete, several existing protocols, (e.g. current symmetric 
cryptography) do not need to be changed significantly to be considered quantum-
resistant (i.e. post-quantum symmetric cryptography).

In April 2016, the National Institute of Science and Technology (NIST) initiated a 
process to solicit, evaluate, and standardize one or more quantum-resistant public-key 
cryptographic algorithms. They announced the release of NIST Interagency Report 
(NISTIR) 8105, a report on Post Quantum Cryptography (see [5] for more details). 
In this report, they explain the status of quantum computing and post-quantum 
cryptography, and outline a research plan for future work in these areas. In December 
2016, NIST announced a formal call for proposals.

In the first round, 69 algorithms were submitted in response to the call for proposals 
and competition. Detailed information concerning these algorithms and the comments 
provided by the world-wide cryptography community are available on the NIST 
webpage (https://csrc.nist.gov/Projects/Post-Quantum-Cryptography).

As the latest step in the program to develop effective defenses and new standards, 
NIST has selected 26 of the 69 submitted cryptographic algorithms. There are 17 
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second round candidates for public-key encryption and key-establishment algorithms 
and 9 second round candidates for digital signatures. This second round will focus on 
evaluating submissions performance across a wide variety of systems and platforms 
as a variety of devices will require effective encryption.

After the completion of the second round of reviews, there still exists the possibility 
of an additional round of review before NIST announces the post-quantum algorithms 
that will supplement or replace the most vulnerable cryptosystems currently in use.  
The state of quantum computer development will determine the requirement for a 
third round of competition.

A tentative timeline made public by NIST will be given in the following table.

TABLE 1:  NIST TIMELINE

Feb 24-26, 2016 NIST Presentation at PQCrypto 2016: 
Announcement and outline of NIST’s Call for Submissions

April 28, 2016 NIST releases NISTIR 8105,
Report on Post-Quantum Cryptography

Dec 20, 2016 Formal Call for Proposal

Nov 30, 2017 Deadline for submissions

Dec 4, 2017 NIST Presentation at AsiaCrypt 2017: 
The Ship Has Sailed: The NIST Post-Quantum Crypto “Competition”

Dec 21, 2017 Round 1 algorithms announced
(69 submissions accepted as “complete and proper”)

Apr 11, 2018 NIST Presentation at PQCrypto 2018: 
Let’s Get Ready to Rumble – The NIST PQC “Competition”

April 11-13, 2018 First PQC Standardization Conference
Submitter’s Presentations

2018/2019 Round 2 begins

August 2019 Second PQC Standardization Conference

2020/2021 Round 3 begins or select algorithms

2022/2024 Draft Standards Available
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The new algorithms rely on several cryptographic schemes that are believed to be 
post-quantum-resistant and include the following:

1.	 Code-based cryptography; 
2.	 Multivariate Cryptography; 
3.	 Lattice-based Cryptography; 
4.	 Hash-based Cryptography; 
5.	 Isogeny-based Cryptography. 

Each of these cryptographic schemes has advantages and disadvantages, and the 
algorithms vary in both their performance measures and maturity. In this paper, we 
will focus on isogeny-based cryptography.

Supersingular isogeny-based cryptography is one of the more recent advances based 
on the arithmetic of elliptic curves. In 2011, Jao and De Feo proposed Supersingular 
Isogeny Diffie-Hellman (SIDH) as a key exchange protocol that would offer post-
quantum security. Isogeny-based algorithms rely on the structure of large isogeny 
graphs, and the cryptographically interesting properties of these graphs are tied to 
their expansion properties.

In recent developments in supersingular isogeny-based cryptography (SIDH), 
Costello [8] focuses on (2,2) reducible Jacobians, where addition is executed via 
Kummer surfaces. More importantly, it seems that the most interesting case is when 
E1 is isogenous to E2. In this case, as the decomposition of the Abelian varieties is 
determined up to isogeny, the 2-dimensional Jacobian is isogenous to E2. There are 
several interesting questions that arise when we consider such Jacobians over the 
finite field 𝔽�.

The space of genus 2 curves with (n,n) reducible Jacobians, for which n=2 or where n 
is odd, is a 2-dimensional irreducible locus ℒ� in the moduli space of curves ℳ2. For 
n=2, this is the well known locus of curves with extra involutions [23], [24], [35]. In 
the cases where n is odd, these spaces were computed for the first time in [32], [34], 
[22].

If E1 and E2 are N-isogenous then their j-invariants j1 and j2 satisfy the equation of the 
modular curve X0(N), say 𝒮�:=𝜙�(j1,j2)=0. Such a curve can be embedded in ℳ2. 
An interesting problem to consider is the study of the intersection between ℒ� and 𝒮� 
for given n and N. More precisely, for any number field K determines the number of 
K-rational points of this intersection. For the case when n=2,3 this was done in [3]. The 
case when n=4 is more complicated since the locus ℒ4 is not explicitly computed. The 
focus of this paper is to compute the locus ℒ4 and then further inverstigate when the 
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two elliptic components of the (n,n) reducible 2-dimensional Jacobians are isogenous 
to each other when n=4 and N=2,3,5,7…..

The remainder of this paper is organized as follows. First we provide an overivew of 
quantum computing and briefly explain Shor and Grover’s algorithms. In Section 3, 
we describe each of the cryptosystems mentioned above. Also, we further explain the 
small changes that should be made to the AES algorithm to allow for its continued 
use and to ensure its ability to resist exploitation by quantum computers. We briefly 
explain supersingular isogeny Diffie-Hellman key exchange, and finally explore 
(n,n)-split Jacobians and compute the locus ℒ4.

2. Quantum Computing

A classical computer has registers that are made up of bits, whereas a quantum 
computer has a single quantum register that is made up of qubits. Given q classical 
bits, their state is a binary string in {0,1}�, which is a q-dimensional space. Whereas, a 
q-qubit quantum register is a 2� -dimensional space. Hence, the dimension of the state 
space of a quantum computer grows exponentially while that of a classical computer 
grows linearly. Furthermore, the amount of information stored in a q-qubit quantum 
register is enormous compared with a classical q-bit computer. However, accessing 
the information stored in a quantum computer is not as easy as in a classical computer. 
Information on the quantum state is only gathered through a measurement gate.

One of the main questions regarding quantum computers is the type of algorithms that 
can be implemented on a quantum computer once they are fielded. There are three 
known algorithms that can be implemented on a quantum computer: Shor’s, Grover’s 
and Simon’s algorithms.

In 1994, Peter Shor came up with a quantum algorithm that calculates the prime 
factors of a large number vastly more efficiently than a classical computer. This poses 
a threat to all modern cryptographic schemes that rely on the difficulty of factoring 
prime numbers. More generally, this algorithm poses a threat to all crypto-systems 
that rely on the difficulty of the discrete logarithm problem.

However, Shor’s algorithm’s efficiency and power relies on a quantum computer 
with a large number of quantum bits. It should be noted that Shor’s algorithm is only 
partially executed on a quantum computer. While many have attempted to implement 
Shor’s algorithm on various quantum systems, none have been successful in doing so 
with more than a few quantum bits or in a scalable way.
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Grover’s algorithm performs a search over an unordered set of N=2� items to find the 
unique element that satisfies some condition. Grover’s algorithm performs the search 
on a quantum computer which is a quadratic speedup (𝑂(�𝑁)) compared to the best 
classical algorithm (𝑂(𝑁)), i.e. a speedup on the brute force attack. In order to achieve 
such a speedup, Grover relies on the quantum superposition of states.

It has been shown that applying Grover’s algorithm to break a symmetric key algorithm 
by brute force requires a time roughly 2�/�, compared to 2� in the classical case. Hence 
the symmetric key lengths are halved, i.e. AES 256 would provide the same security 
level against an attack using Grover’s algorithm as AES 128 would provide against 
a classical attack. Hence, as long as the best-known attack on AES is the brute force 
attack, we can classify AES as quantum-resistant.

Post-quantum symmetric cryptography does not need to be changed significantly 
from current symmetric cryptography other than by increasing current security levels. 
The AES algorithm with appropriate key length will be able to resist attacks launched 
from quantum computers.

3. Post-Quantum Cryptography

In this section, we describe shortly different cryptosystems that are believed to be 
quantum-resistant. For more details, see [5] and the NIST webpage on post-quantum 
cryptosystems.

A. Code-based Cryptography
Code-based cryptosystems are among the most promising candidates to replace 
quantum-vulnerable primitives such as the Diffie-Hellman key exchange, the Rivest-
Shamir-Adleman (RSA), and ElGamal cryptosystems. One of the problems for which 
no known polynomial time algorithm on a quantum computer exists is the decoding 
of a general linear code. Conservative and well-understood choices for code-based 
cryptography are the McEliece cryptosystem [25] and its dual variant by Niederreiter 
[27] using binary Goppa codes.

B. Multivariate Cryptography
Another potential candidate for PQC is multivariate cryptography. Multivariate 
cryptography relies on the difficulty of solving a system of m polynomial equations 
in n variables over a finite field. The complexity of solving a multivariate polynomial 
system (𝑀𝑃 problem) or a multivariate quadratic system (𝑀𝑄 problem) where 
coefficients of the monomials are independently and uniformly distributed (i.e. 
random) is well-known to be 𝑁𝑃-hard. 



357

An arbitrary 𝑀𝑃 system can be transformed into an equivalent 𝑀𝑄 system by 
substituting monomials of degree larger than two with new variables and introducing 
extra equations to the system. Furthermore, a polynomial system over any extension 
field 𝔽�� can be reduced into an equivalent system over 𝔽� using a Weil descent. 

While there have been some proposals for multivariate encryption schemes, 
multivariate cryptography has historically been more successfully employed as an 
approach to signatures.

C. Lattice-based Cryptography
A lattice is an infinite arrangement of regularly spaced points, and can be generated 
as the set of all linear combinations of m independent vectors in ℝ�, called a basis. 
Cryptosystems based on lattice problems have received renewed interest. Lattice-based 
cryptography starts with the work of Ajtai [1] and uses hard problems on lattices as 
the foundation of secure cryptographic constructions. Exciting new applications (such 
as fully homomorphic encryption, code obfuscation, and attribute-based encryption) 
have been made possible using lattice-based cryptography. 

Lattice-based cryptographic constructions are mainly based on two well-known 
problems: the Small Integer Solution problem (SIS) and its Inhomogeneous variant 
(ISIS) [1], and the Learning With Errors problem (LWE) introduced by Regev [29]. 
Structured variants of the LWE and SIS problems were proposed [39], called Ring-
SIS and Ring-LWE. These problems are preferred in practice since they enjoy smaller 
storage and faster operations. These two problems can be used to construct many 
basic cryptographic primitives such as PKE (adapting the schemes from [29]) and 
signatures [10], [11], [21].

D. Hash-based Cryptography
Cryptographic hash functions are one of the central primitives in cryptography. They 
are used virtually everywhere: as cryptographically secure checksums to verify 
the integrity of software or data packages; as building block in security protocols, 
including TLS, SSH, IPSEC; as part of any efficient variable-input-length signature 
scheme; to build fully-fledged hash-based signature schemes; and in transformations 
for CCA-secure encryption.

While all widely deployed means of public-key cryptography may be threatened by 
the rise of quantum computers, hash functions are believed to be only mildly affected. 
The reason for this is two-fold. On the one hand, generic quantum attacks achieve at 
most a square-root speed up compared to their pre-quantum counterparts and can be 
proven asymptotically optimal [15], [41]. On the other hand, no dedicated quantum 
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attacks on any specific hash function perform better than generic quantum attacks 
(except, of course, for hash functions based on number theory, e.g., VSH [6]).

E. Isogeny-based Cryptography
Supersingular isogeny-based cryptography is one of the more recent families of 
post-quantum proposals. Ever since their introduction to public-key cryptography by 
Miller [26] and Koblitz [18], elliptic curves have been of interest to the cryptographic 
community. By using the group of points on an appropriately chosen elliptic curve 
where the discrete logarithm problem is assumed to be hard, many standard protocols 
can be instantiated. The efficiency of these curve-based algorithms is largely 
determined by the scalar multiplication routine, and as a result extensive research has 
gone into optimizing this operation.

In 2011, Jao and De Feo [17] proposed supersingular isogeny Diffie-Hellman as a key 
exchange protocol offering post-quantum security. 

4. Isogeny-based supersingular 
elliptic curve cryptography

In this section, we will give a brief overview on supersingular isogeny-based 
cryptography and explain the quantum-resistant supersingular Diffie-Hellman key 
exchange scheme. Most of the material presented in this section can be found in [2, 
4, 7, 12].

A. Isogenies of Elliptic Curves
Let 𝐸 and 𝐸’ be elliptic curves defined over field 𝐾. An isogeny 𝜙:𝐸→𝐸’ is an algebraic 
morphism satisfying 𝜙(∞)=∞. The degree of the isogeny is its degree as an algebraic 
map. The endomorphism ring 𝐸nd (𝐸) is the set of isogenies from 𝐸 to itself, together 
with the constant morphism. This set forms a ring under point-wise addition and 
composition.

When 𝐾 is a finite field, the rank of 𝔼nd(𝐸) as a ℤ-module is either 2 or 4. We say 𝐸 
is supersingular if the rank is 4, and ordinary otherwise. A supersingular curve cannot 
be isogenous to an ordinary curve.

Supersingular curves are all defined over 𝔽�2, and for every prime 𝑙γ𝑝 there exist 
𝑙+1 isogenies (counting multiplicities) of degree 𝑙 originating from any given such 
supersingular curve. Given an elliptic curve 𝐸 and a finite group 𝐺 of 𝐸, there is up 
to isomorphism a unique isogeny 𝐸→𝐸’ having kernel 𝐺, [38]. Hence we can identify 
an isogeny by specifying its kernel, and conversely given a kernel subgroup the 
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corresponding isogeny can be found using Vélu’s formulas, see [40]. Two elliptic 
curves are called isogenous if there exists an isogeny between them.

B. Supersingular Isogeny Diffie-Hellman Key Exchange
In this section, we present briefly a key exchange protocol using supersingular elliptic 
curves; see [12] for a more complete description of this protocol as well as zero-
knowledge proof of identity and a public-key encryption based on supersingular 
isogenies.

This protocol requires supersingular curves of smooth order. Fix 𝔽�=𝔽�2, where 
 and 𝑙�, 𝑙� are small primes, and 𝑓 is a cofactor such that 𝑝 is prime. 

Construct a supersingular elliptic curve 𝐸 defined over 𝔽� of cardinality .
By construction,  is 𝔽�-rational and contains  cyclic subgroups of 
order , each defining a different isogeny; the analogous statement holds for .

More precisely, the supersingular isogeny Diffie-Hellman key exchange follows 
this algorithm. Pick as the public parameters a supersingular elliptic curve 𝐸 over 
𝔽�2, and bases {𝑃�,𝑄�} and {𝑃�,𝑄�} which generate respectively ,
and . Then Alice chooses two random numbers 𝑚�,𝑛�∈ℤ 
not both divisible by 𝑙�, and computes an isogeny α:𝐸→𝐸/⟨𝐴⟩ with kernel 
⟨𝐴⟩=⟨[𝑚�]𝑃�+[𝑛�]𝑄�⟩. Alice computes also α(𝑃�) and α(𝑄�) and then sends them 
to Bob together with 𝐸�.

Bob on the other side chooses two random numbers 𝑚�,𝑛�∈ℤ not both divisible by 𝑙�, 
and computes an isogeny 𝛽:𝐸→𝐸/⟨𝐵⟩ with kernel ⟨𝐵⟩=⟨[𝑚�]𝑃�𝐵+[𝑛�]𝑄�⟩ as well as 
𝛽(𝑃�) and 𝛽(𝑄�) and then sends them to Alice.

Upon receipt of the respective information, both parties can compute the 
secret shared key. Alice computes 𝐸/⟨𝐴,𝐵⟩=𝐸�/⟨𝛽(𝐴)⟩ and ⟨𝛽(𝐴)⟩=⟨[𝑚�]
𝛽(𝑃�)+[𝑛�]𝛽(𝑄�)⟩ and Bob similarly computes 𝐸/⟨𝐴,𝐵⟩=𝐸�/⟨α(𝐵)⟩ where 
⟨α(𝐴)⟩=⟨[𝑚�]α(𝑃�)+[𝑛�]α(𝑄�)⟩ so that they have the shared secret key 𝐸/⟨𝐴,𝐵⟩. 
This is summarised in the following table 2.

Given two elliptic curves 𝐸, 𝐸’ over a finite field, isogenous of known degree d, 
finding an isogeny 𝜙:𝐸→𝐸’ of degree d is a notoriously difficult problem for which 
only algorithms exponential in log #𝐸 are known in general.

In [9] they give a precise formulation of the necessary computational assumptions (of 
supersingular isogeny Diffie-Hellman key exchange, zero-knowledge proof of identity, 
and a public-key encryption based on supersingular isogenies) along with a discussion 
of their validity, and prove the security of these protocols under those assumptions.



360

However, in recent developments in supersingular isogeny-based cryptography 
(SIDH), Costello [8] focuses on (2,2) reducible Jacobians.  As pointed out by Costello 
in the last paragraph of [8]: “One hope in this direction is the possibility of pushing 
odd degree l-isogeny maps from the elliptic curve setting to the Kummer setting. 
This was difficult in the case of 2-isogenies because the maps themselves are (2, 2)- 
isogenies, but in the case of odd degree isogenies there is nothing obvious preventing 
this approach.’’

TABLE 2: SUPERSINGULAR ISOGENY DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM

In the upcoming sections, we focus on n,n-reducible Jacobians, and more precisely 
when n=4.

5. Isogenous components 
of Jacobian Surfaces

An Abelian variety defined over 𝑘 is an absolutely irreducible projective variety 
defined over 𝑘, which is a group scheme. We will denote an Abelian variety defined 
over a field 𝑘 by 𝔸� or simply 𝔸. A morphism from the Abelian variety 𝔸1 to the 
Abelian variety 𝔸2 is a homomorphism if and only if it maps the identity element of 
𝔸1 to the identity element of 𝔸2.

An Abelian variety over a field k is called simple if it has no proper non-zero Abelian 
subvariety over 𝑘. It is called absolutely simple (or geometrically simple) if it is 
simple over the algebraic closure of 𝑘. An Abelian variety of dimension 1 is called an 
elliptic curve.
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A homomorphism 𝑓:𝔸→ℋ is called an isogeny if 𝐼𝑚𝑔𝑓=ℋ and ker𝑓 is a finite group 
scheme. If an isogeny 𝔸→ℋ exists, we say that 𝔸 and ℋ are isogenous. This relation 
is symmetric. The degree of an isogeny 𝑓:𝔸→ℋ is the degree of the function field 
extension deg𝑓:=[𝑘(𝔸):𝑓⋆𝑘(ℋ)]. It is equal to the order of the group scheme ker(𝑓), 
which is, by definition, the scheme theoretical inverse image 𝑓–1({0𝔸}).

The group of 𝑘–-rational points has order #(ker𝑓)(𝑘–)=[𝑘(𝐴):𝑓⋆𝑘(𝐵)]���, where 
[𝑘(𝐴):𝑓⋆𝑘(𝐵)]��� is the degree of the maximally separable extension in 𝑘(𝐴)/𝑓⋆𝑘(ℋ).
We say that 𝑓 is a separable isogeny if and only if #ker𝑓(𝑘–)=deg𝑓.

For any Abelian variety 𝔸/𝑘 there is a one to one correspondence between the 
finite subgroup schemes 𝐻≤𝔸 and isogenies 𝑓:𝔸→ℋ, where ℋ is determined up 
to isomorphism. Moreover, 𝐻=ker𝑓 and ℋ=𝔸/𝐻. 𝑓 is separable if and only if 
𝐾 is étale, and then deg𝑓=#𝐻(𝑘–). The following is often called the fundamental 
theorem of Abelian varieties. Let 𝔸 be an Abelian variety. Then 𝔸 is isogenous to 
𝔸1�1×𝔸2�2×…×𝔸���, where (up to permutation of the factors) 𝔸�, for 𝑖=1,…,𝑟 are 
simple, non-isogenous, Abelian varieties. Moreover, up to permutations, the factors 
𝔸��� are uniquely determined up to isogenies.

When 𝑘=𝑘–, then let 𝑓 be a non-zero isogeny of 𝔸. Its kernel ker𝑓 is a subgroup 
scheme of 𝔸. It contains 0𝔸 and so its connected component, which is, by definition, 
an Abelian variety.

A. Jacobian Surfaces
Abelian varieties of dimension 2 are often called Abelian (algebraic) surfaces. We focus 
on Abelian surfaces which are Jacobian varieties. Let 𝒳 be a genus 2 curve defined 
over a field 𝑘. Then its gonality is γ�=2. Hence, genus 2 curves are hyperelliptic and 
we denote the hyperelliptic projection by 𝜋:𝒳→ℙ1. By the Hurwitz’s formula, this 
covering has 𝑟=6 branch points which are images of the Weierstrass points of 𝒳. The 
moduli space has dimension 𝑟–3=3.

The arithmetic of the moduli space of genus two curves was studied by Igusa in his 
seminal paper [16] expanding on the work of Clebsch, Bolza, and others. Arithmetic 
invariants by 𝐽2,𝐽4,𝐽6,𝐽8,𝐽10 determine uniquely the isomorphism class of a genus two 
curve. Two genus two curves 𝒳 and 𝒳’ are isomorphic over 𝑘– if and only if there 
exists 𝜆∈𝑘–⋆ such that 𝐽2�(𝒳)=𝜆2�𝐽2�(𝒳’), for 𝑖=1,…,5. If chark ≠2 then the invariant 
𝐽8 is not needed.

From now on we assume char 𝑘≠2. Then 𝒳 has an affine Weierstrass equation

𝑦2=𝑓(𝑥)=𝑎6𝑥6+⋯+𝑎1𝑥+𝑎0,	 (1)
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over 𝑘–, with discriminant Δ�=𝐽10≠0. The moduli space ℳ2 of genus 2 curves, via the 
Torelli morphism, can be identified with the moduli space of the principally polarized 
abelian surfaces 𝔸2 which are not products of elliptic curves. Its compactification 𝔸2⋆ 
is the weighted projective space 𝕎ℙ3(2,4,6,10)(𝑘) via the Igusa invariants 𝐽2,𝐽4,𝐽6,𝐽10. 
Hence, 𝐴2 ≅ 𝕎ℙ3(2,4,6,10)(𝑘)\{𝐽10=0}. Given a moduli point 𝔭∈ℳ2, we can recover 
the equation of the corresponding curve over a minimal field of definition following 
[23].

It is well known that a map of algebraic curves 𝑓:𝑋→𝑌 induces maps between their 
Jacobians 𝑓*:𝕁𝑎𝑐(𝑌)→𝕁𝑎𝑐(𝑋) and 𝑓*:𝕁𝑎𝑐(𝑋)→𝕁𝑎𝑐(𝑌). When 𝑓 is maximal then 𝑓* is 
injective and ker(𝑓*) is connected; see [31] for more details.

Let 𝒳 be a genus 2 curve and 𝜓1:𝒳⟶𝐸1 be a degree n maximal covering from 𝒳 to an 
elliptic curve 𝐸1. Then 𝜓*1:𝐸1→𝕁𝑎𝑐(𝒳) is injective and the kernel of 𝜓1,*:𝕁𝑎𝑐(𝒳)→𝐸1 
is an elliptic curve, which we denote by 𝐸2. For a fixed Weierstrass point 𝑃∈𝒳, we can 
embed 𝒳 to its Jacobian via

𝑖�:𝒳⟶𝕁𝑎𝑐(𝒳)
𝑥→[(𝑥)–(𝑃)]	 (2)

Let 𝑔:𝐸2→𝕁𝑎𝑐(𝒳) be the natural embedding of 𝐸2 in 𝕁𝑎𝑐(𝒳), then there exists 
𝑔*:𝕁𝑎𝑐(𝒳)→𝐸2. Define 𝜓2=𝑔*∘𝑖�:𝒳→𝐸2. So we have the following exact sequence 

0→𝐸2𝑔⟶𝕁𝑎𝑐(𝒳)𝜓1,*⟶𝐸1→0.	 (3)

The dual sequence is also exact 0→𝐸1𝜓*1⟶𝕁𝑎𝑐(𝒳)𝑔*⟶𝐸2→0.
If deg(𝜓1)=2 or it is an odd number, then the maximal covering 𝜓2:𝒳→𝐸2 is unique 
(up to isomorphism of elliptic curves). The Hurwitz space ℋ� of such covers is 
embedded as a subvariety of the moduli space of genus two curves ℳ2; see [34] for 
details. It is a 2-dimensional subvariety of ℳ2 which we denote using ℒ�. An explicit 
equation for ℒ�, in terms of the arithmetic invariants of genus 2 curves, can be found 
in [35] or [23] for 𝑛=2, in [34] for 𝑛=3, and in [22] for 𝑛=5. From now on, we will 
say that a genus 2 curve 𝒳 has an (𝑛,𝑛)-decomposable Jacobian if 𝒳 is as above and 
the elliptic curves 𝐸�, 𝑖=1,2 are called the components of 𝕁𝑎𝑐(𝒳).

For every 𝐷:=𝐽10>0 there is a Humbert hypersurface 𝐻� in ℳ2 which parametrizes 
curves 𝒳 whose Jacobians admit an optimal action on 𝒪�; see [14]. Points on 𝐻�2 
parametrize curves whose Jacobian admits an (𝑛,𝑛)-isogeny to a product of two 
elliptic curves. Such curves are the main focus of our study. In [20, Prop. 2.14] the 
authors prove that 𝕁𝑎𝑐(𝒳) is a geometrically simple Abelian variety if and only if it is 
not (𝑛,𝑛)-decomposable for some 𝑛>1. 
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6. (n,n) reducible Jacobians surfaces

Genus 2 curves with (𝑛,𝑛)-decomposable Jacobians are the most studied type of 
genus 2 curves due to work of Jacobi, Hermite, et al. They provide examples of genus 
two curves with a large Mordell-Weil rank of the Jacobian, many rational points, 
nice examples of descent [33], etc. Such curves have received new attention lately 
due to interest in their use on cryptographic applications and their suggested use on 
post-quantum crypto-systems and the random self-reducibility of discrete logarithm 
problem; see [8]. A detailed account of applications of such curves in cryptography is 
provided in [13].

Let 𝒳 be a genus 2 curve defined over an algebraically closed field k, 𝑐ℎ𝑎𝑟𝑘=0, 𝐾 the 
function field of 𝒳, and 𝜓1:𝒳⟶𝐸1 a degree n covering from 𝒳 to an elliptic curve 𝐸; 
see [31] for the basic definitions. The covering 𝜓1:𝒳⟶𝐸 is called a maximal covering 
if it does not factor through a nontrivial isogeny. We call 𝐸 a degree 𝑛 elliptic subcover 
of 𝒳. Degree 𝑛 elliptic subcovers occur in pairs, say (𝐸1,𝐸2). It is well known that 
there is an isogeny of degree 𝑛2 between the Jacobian 𝕁𝑎𝑐(𝒳) and the product 𝐸1×𝐸2. 
Such curve 𝒳 is said to have (𝑛,𝑛)-decomposable (or (𝑛,𝑛)-split) Jacobian. The focus 
of this paper is on isogenies among the elliptic curves 𝐸1 and 𝐸2.

The locus of genus 2 curves 𝒳 with (𝑛,𝑛)-decomposable Jacobian it is denoted by 
ℒ�. When 𝑛=2 or 𝑛 an odd integer, ℒ� is a 2-dimensional algebraic subvariety of 
the moduli space ℳ2 of genus two curves; see [31] for details. Hence, we can get an 
explicit equation of ℒ� in terms of the Igusa invariants 𝐽2,𝐽4,𝐽6,𝐽10; see [35] for ℒ2, [34] 
for ℒ3, [36] for ℒ4, and [22] for ℒ5. There is a more recent paper on the subject [19] 
where results of [22, 34] are confirmed and equations for 𝑛>5 are studied.

A. Computing the Locus ℒ4 in ℳ2
When deg(𝜙)=4 to compute the locus ℒ4(𝜎) one has to consider two cases. There is 
one generic case and one degenerate case with possible ramification structures:

1.	 (2,2,2,22,2) (generic) 
2.	 (2,2,2,4) (degenerate) 

In this paper, we will focus only on the generic case. For a complete treatment of the 
degenerate case see [28, 36].

B. Non-degenerate Case
Let 𝜓:𝐶⟶𝐸 be a covering of degree 4, where 𝐶 is a genus 2 curve and 𝐸 is an elliptic 
curve. Let 𝜙 be the Frey-Kani covering with deg(𝜙)=4 such that 𝜙(1)=0, 𝜙(∞)=∞, 
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𝜙(𝑝)=∞ and the roots of 𝑓(𝑥)=𝑥2+𝑎𝑥+𝑏 be in the fiber of 0. In the following figure, 
bullets (resp., circles) represent places of ramification index 2 (resp., 1).

FIGURE 2: DEGREE 4 COVERING FOR GENERIC CASE

Then the cover can be given by 

	 (4)

Let 𝜆1,𝜆2,𝜆3 and ∞ be the Weierstrass points of 𝐸. Then

Next, let 𝜆1,𝜆2,𝜆3 and 0 be the Weierstrass points of 𝐸. Then 
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By clearing the denomirators and equaling the coefficients of quartics to zero, we get 
a system of equations in terms of parameters 𝑎,𝑏,𝑎1,𝑏1,𝑎2,𝑏2,𝑎3,𝑏3,α1,…α4, 𝜆1,𝜆2,𝜆3,𝑘. 
We solve this equation to get 

where . The equation of the genus 2 curve is

and elliptic curves have equations 

Notice that we write the equation of genus 2 curve in terms of only 2 unknowns. We 
denote the Igusa invariants of 𝐶 by 𝐽2,𝐽4,𝐽6, and 𝐽10. The absolute invariants of 𝐶 are 
given in terms of these classical invariants: 

Two genus 2 curves with 𝐽2≠0 are isomorphic if and only if they have the same 
absolute invariants. Notice that these invariants of our genus 2 curve are polynomials 
in 𝑎 and 𝑏. By using 𝑎 computational symbolic package (as Maple), we eliminate 𝑎 
and 𝑏 to determine the equation for the non-degenerate locus ℒ4. The result is very 
long. We do not display it here.
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7. Final Remarks and Future Work

Let 𝒳 be a genus 2 curve defined over a field 𝐾, 𝑐ℎ𝑎𝑟𝐾=𝑝≥0, and 𝕁𝑎𝑐(𝒳,𝜄) its 
Jacobian, where 𝜄 is the principal polarization of 𝕁𝑎𝑐(𝒳) attached to 𝒳. Assume that 
𝕁𝑎𝑐(𝒳) is (𝑛,𝑛)- geometrically reducible with 𝐸1 and 𝐸2 its elliptic components.

In an upcoming project, we would like to study pairs of (𝐸1,𝐸2) elliptic components 
and try to determine their number (up to isomorphism over 𝑘–) when they are 
isogenous of degree 𝑁, for an integer 𝑁≥2. We denote by 𝜙�(𝑥,𝑦) the 𝑁-th modular 
polynomial. Two elliptic curves with 𝑗-invariants 𝑗1 and 𝑗2 are 𝑁-isogenous if and only 
if 𝜙�(𝑗1,𝑗2)=0. The equation 𝜙�(𝑥,𝑦)=0 is the canonical equation of the modular 
curve 𝑋0(𝑁). The equations of 𝑋0(𝑁) are well-known.

In [3], Beshaj et al. prove that there are only finitely many curves 𝒳 (up to isomorphism) 
defined over 𝐾 such that 𝐸1 and 𝐸2 are 𝑁-isogenous for 𝑛=2 and 𝑁=2,3,5,7 with 
Aut(𝕁𝑎𝑐𝒳) ≅ 𝑉4 or 𝑛=2, 𝑁=3,5,7 with Aut(𝕁𝑎𝑐(𝒳)) ≅ 𝐷4. The same holds if 𝑛=3 
and 𝑁=5. Furthermore, by determining the Kummer and the Shioda-Inose surfaces 
for the above 𝕁𝑎𝑐(𝒳) we can show how such results in positive characteristic 𝑝>2 
suggest nice applications in cryptography. Now that we have computed the locus ℒ4, 
it would be interesting to explore the same problem when 𝑛=4 and 𝑁=2,3,5,7.
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