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Abstract—Cyber threat intelligence assists organisations in 

understanding the threats they face and helps them make educated 

decisions on preparing their defences. Sharing of threat intelligence 

and threat information is increasingly leveraged by organisations and 

enterprises, and various software solutions are already available, with 

the open-source malware information sharing platform (MISP) being 

a popular one. In this work, a methodology for the production of cyber 

threat intelligence using the threat information stored in MISP is 

proposed. The methodology leverages the discipline of social network 

analysis and the diamond model, a model used for intrusion analysis, 

to produce cyber threat intelligence. The workings of the proposed 

methodology are demonstrated with a case study on a production MISP 

instance of a real organisation. The paper concludes with a discussion 

on the proposed methodology and possible directions for further 

research. 
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I. INTRODUCTION 

HE ever-increasing number and sophistication of cyber-

attacks pose the need for organisations to understand how 

the threat actors operate and to properly adjust their defences. 

Cyber threat intelligence (CTI) is a tool for achieving this 

understanding and various defenders already employ such 

programs reporting varying levels of maturity. Establishing 

CTI-sharing communities enables the participants to benefit 

from collective knowledge and experience. Shared situational 

awareness, improved security posture, knowledge maturation 

and defensive agility are among the resulting benefits. CTI-

sharing is accompanied by challenges such as establishing trust, 

automation and interoperability, protecting information and 

enabling its consumption. Leveraging CTI makes it easier for 

an organisation to understand the threats it is facing and make 

better-informed decisions on incident response, both 

technically and procedurally [1]. According to a recent report, 

even small organisations increasingly invest in CTI 

programmes, demonstrating it as a mature field whose benefits 

are well understood and perceived [2]. There is a tendency 

toward automation of tools and processes with the profound aim 

of allowing analysts to focus on higher-level analytical 

activities instead of performing repetitive tasks. CTI is not only 

consumed by organisations but it is also disseminated using 

tools such as vendor-created or open-source threat intelligence 

platforms [2]. Their uses vary from the strategic (resource 

prioritisation and allocation) to the tactical (threat alerting and 
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response). 

The MISP is an open-source software solution for the 

collection, storage, distribution and sharing of cyber security 

indicators and threats and can be used for the analysis of 

malware and cyber security incidents. An indicator is ‘a 

technical artefact or observable that suggests an attack is 

imminent or is currently underway or that a compromise may 

have already occurred’ [1]. Indicators of malware, attacks, 

financial fraud or any other intelligence can be shared within a 

community of trusted members [3]. MISP is a popular solution 

and is operated by many enterprises and organisations [4] for 

storing, correlating, sharing and consuming indicators with 

organisations operating their own instances or participating in 

sharing communities. The indicators stored in MISP are of great 

value for organisations since they can be used to detect and 

block attacks [2]. Further analysis of the indicators can lead to 

the production of CTI to facilitate decisions such as resource 

prioritisation and allocation. 

This paper seeks to provide a means of producing CTI using 

the data stored in CTI platforms, while its contribution is a 

methodology for achieving this. The novelty of this work is the 

application of social network analysis (SNA) concepts and 

techniques to the MISP software solution to produce CTI.  

In MISP an organisation creates events and each event is 

described by various attribute values, which can be in the form 

of free-text or specific data types (domain names, internet 

protocol (IP) addresses, file hashes, etc.). In this work, it is 

assumed that when an organisation creates an event it has been 

affected by it in some way since it detected and reported it. The 

relationship between organisations, events and attributes is 

modelled as a social network and SNA is applied to identify 

groups of indicators (attribute values) and organisations that 

should be prioritised for incident response. The selection of 

SNA measurements and the prioritisation of indicators and 

organisations is achieved by leveraging the diamond model 

(DM) of intrusion analysis [5]. The workings of the proposed 

methodology are demonstrated with a case study using a data 

set from a production MISP instance of the Computer Incident 

Response Centre, Luxembourg (CIRCL) [6]. 

The remainder of this paper is organised as follows: In 

Section II, related work is discussed and in Section III, the 

proposed methodology is presented. In Section IV, the 

workings of the proposed methodology are demonstrated by 

applying it to a dataset from a real organisation. This work is 

concluded with Section V, which summarises the findings and 

proposes directions for future work. 
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II. RELATED WORK 

CTI has attracted research interest with various aspects of 

CTI and CTI platforms being studied. Researchers are applying 

supervised machine learning, natural language processing and 

deep learning techniques to process shared CTI data ([7]-[10], 

as cited in [11]). In [12], the authors deal with the shortcomings 

of the resource description framework (RDF) and other existing 

knowledge graphs in describing cyber threats and intelligence. 

They propose a hand-curated knowledge graph that uses 

unstructured threat-related data to extract information. The 

work in [13] addresses the problem of the limited use that text-

intensive and semi-structured data have for security experts due 

to their extent and lack of readability. The authors seek to 

improve the accessibility of security experts to CTI. They 

propose a concept for the interactive visual analytics of threat 

intelligence presenting information in a graph database 

connected to a visual interface. This visual interface helps the 

security experts in incident analysis and the inclusion of 

knowledge into CTI information. 

There is also work in evaluating existing CTI platforms and 

standards. In [14], the authors propose a methodology for 

evaluating threat intelligence standards and CTI platforms, 

while in [15] existing CTI relevant ontologies, taxonomies and 

sharing standards are evaluated to measure their high-level 

conceptual expressivity. The quality of CTI is assessed in [16] 

and the quality of open-source CTI feeds is evaluated in [17]. 

The risk of sharing CTI data sets is assessed in [18] with the 

authors proposing a quantitative risk model for performing the 

assessment. In [19], the authors present a novel trust taxonomy 

to establish a trusted threat-sharing environment. They compare 

and analyse popular CTI platforms and providers and the 

proposed taxonomy is demonstrated through case studies. 

A prototype application is developed in [11] where the 

authors automatically process MISP data aiming to prioritise 

them. They aim to address the needs of small and medium-sized 

enterprises by providing recommendations tailored to their 

context. In [20] and [21], the authors deal with the topic of 

sharing indicators in an efficient way that considers their 

validity and freshness. They propose a scoring model for 

prioritising, or decaying, attributes in MISP that uses MISP 

event attributes such as taxonomies, sightings and the reliability 

of the source. The scoring methods are evaluated using a 

phishing dataset with encouraging results. The authors in [22] 

propose an enriched threat intelligence platform to integrate 

security data from public sources with the data generated by the 

monitored infrastructure’s detection and response systems such 

as security information and event management (SIEM) systems 

or intrusion detection and prevention systems (IDPS). This is 

achieved using heuristic analysis to correlate the receiving 

open-source intelligence (OSINT) data with the potential 

security issues of the monitored infrastructure, thus resulting in 

a threat score for the received OSINT data used in continuance 

to prioritise them. Following, these enriched data are sent to 

security systems (SIEM, IDPS, etc.) for visualisation, storage 

and processing and is shared with external organisations. 

As far as it is known, there is no published work seeking to 

analyse and prioritise indicators through the application of SNA 

concepts and techniques on CTI platforms including MISP. 

III. PROPOSED METHODOLOGY 

In the context of this work, threat intelligence is defined as, 

‘threat information that has been aggregated, transformed, 

analysed, interpreted or enriched to provide the necessary 

context for decision-making processes’ [1]. 

An organisation that is registered to a MISP instance can 

enter data creating an event [3]. An event contains generic 

information such as time and risk level of the incident and a 

short description and is further described by adding attributes. 

An attribute is described by a category, a type and a value, 

among other things. The value of the attribute is the actual 

indicator related to the stored event. The relations among 

organisations, events and attributes are shown in Fig. 1. An 

organisation can be related to many events while the same event 

may affect many organisations; an event can be described by 

many attributes and an attribute may describe many events. The 

relationship between the data structures allows us to model the 

data as a social network and consequently use the SNA methods 

and techniques to analyse it [23]. 
 

 

Fig. 1 MISP entity relationships diagram 

 

The DM is a model for intrusion analysis and describes an 

adversary that uses some capability over some infrastructure 

against a victim. These activities are called events, with their 

core features being adversary, capability, infrastructure and 

victim. Meta-features are also defined in the model (timestamp, 

phase, result, direction, methodology, resources) and an 

extension of the model itself, adding the features of social-

political and technology. The vertices of the model are linked 

with the edges (see Fig. 2), highlighting the relationships 

between the features. This enables the analyst to pivot across 

edges and within vertices exposing more information about 

adversary operations, capabilities, infrastructure and victims 

[5]. The infrastructure feature is used to describe, ‘the physical 

and/or logical communication structures the adversary uses to 

deliver a capability, maintain control of capabilities and effect 

results from the victim’ [5]. It can be a domain name, an IP 

address, an email address or something broader like a USB 

device. This work encompasses the indicators that 

organisations use to describe the events they create in MISP. 

The meta-feature of a shared threat space is also used with two 

or more victims in a shared threat space as long as they share 

features that satisfy the needs of one or more adversaries. The 

identification of the shared threat space is thought to be the 

cornerstone of strategic and proactive mitigation [5] as it allows 



 

the prediction of future attacks based on the current attacks on 

the members of the threat space. The DM proposes analytical 

pivoting approaches, among which the infrastructure-centred 

approach is leveraged in the proposed methodology. This 

analytic approach focuses on the infrastructure of the adversary 

where starting from an element of his infrastructure, more 

elements and related infrastructure can be discovered. For 

example, a victim communicating with an IP address can lead 

to the identification of more victims, since any system 

communicating with this IP address could also be compromised 

by the same adversary. 
 

 

Fig. 2 DM features relationships 

 

SNA [23] is based on the assumption of the importance of 

relationships among interacting units. It is part of the social and 

behavioural sciences, though a discrete research perspective, 

and it includes models, theories and applications that are 

expressed with relational concepts or processes [23]. In the 

SNA perspective an actor (or node) is a social entity. It can be 

a discrete social unit (an individual, group of people, corporate 

department, etc.), and though termed actors it is not implied that 

they have the ability to act. Social ties (or links), connect actors, 

establishing a tie between a pair of actors and are channels for 

the transfer or flow of resources, either material or nonmaterial. 

A relation is the collection of ties of a specific kind among 

members of a group (or set) of actors. A social network consists 

of a finite set, or sets, of actors and the relation, or relations, 

defined on them. They are composed of nodes and links. When 

the link from node A to node B is different from the link from 

node B to node A, the network is directed. When it is the same, 

the network is undirected. A node can have one or more 

attributes and a link can be binary or valued. Using graph theory 

notation, G = (V, E) is a social network G with |V| nodes and 

|E| links among them and it is represented by a |V| x |V| 

adjacency matrix. When a link exists between node vi∈V and 

node vj∈V, this is indicated by a value in the eij∈E cell. This is 

a 1-mode network since the links are formed among the nodes 

of the same set. Formally, the term mode refers to a distinct set 

of entities where structural variables are measured, while 

structural variables measure ties of a specific kind between 

pairs of nodes. A 2-mode network is formed between two 

distinct sets of nodes, M and N, represented by the |M| x |N| 

incidence matrix. 

Affiliation networks are 2-mode networks consisting of a set 

of actors and a set of events and describe collections of actors 

rather than simply ties between pairs of actors [23]. An event 

does not necessarily consist of face-to-face interaction. It can 

correspond to various occasions such as the participation in a 

party, a club, a committee, a board of directors, etc. When two 

actors participate, for example, in the same committee, they are 

affiliated (linked) by the same committee (event). An affiliation 

network is represented by an affiliation matrix |A| x |E|. When 

row actor i affiliates to column event j, a value of 1 is present 

in the ij cell. Folding [24] the affiliation network uses matrix 

algebra to first transpose its matrix to the desired dimension and 

then multiply it by the initial incidence matrix. This results in 

|A| x |A|, the array of linkages among actors through their 

participation in events, where a value in the ij cell indicates the 

number of events the two actors share; |E| x |E|, the array of 

linkages among events through the participation of actors, 

where a value in cell ij indicates the number of actors the two 

events share. These 1-mode networks that derive from the 

affiliation network are valued and undirected and the linkages 

among the members of one mode are based on the linkages 

established through the second mode. A property of affiliation 

networks is the duality in the relationship between actors and 

events, which analytically means that both the ties between the 

events and between the actors can be studied. 

The proposed methodology starts with the construction of the 

affiliation network, the undirected 2-mode social network that 

relates the actors (organisations) to the event attributes 

(indicators). The first node set, O = {org1, org2,...,orgn}, consists 

of the organisations (actors) and the second node set, I = {ind1, 

ind2, …, indm}, consists of the indicators (events) that affect 

those organisations. The affiliation matrix is represented by |O| 

x |I|, where the presence of a value in the ij cell indicates that 

orgi is affected by indj and a link, if formed among them (Fig. 

3). Following, the |O| x |I| matrix is folded resulting in the |O| x 

|O| and |I| x |I| arrays. The former (Fig. 4) consists of the 

organisations that are affected by the same indicators; the value 

in the ij cell corresponds to the common indicators between orgi 

and orgj. The latter (Fig. 5) consists of the indicators that affect 

the same organisations; the value in the ij cell corresponds to 

the common organisations affected by indi and indj. 
 



 

 

 

Fig. 3 |O| x |I| affiliation network 

 

 

Fig. 4 |O| x |O| 1-mode social network 

 

Having constructed the two 1-mode networks, the measure 

of total degree centrality is calculated for each node. Total 

degree centrality is the number of links a node has and is used 

to identify the nodes that actively participate in the social 

network. It is distinguished into in degree and out degree, when 

the links are directed to or from the node, respectively. The total 

degree centrality of a node is equal to its normalised in degree, 

plus its out degree. Let G = (V, E) be the graph representation 

of a square network and a node v. The total degree centrality of 

node v = deg / 2 * (|V| - 1), where deg = card {u∈V|(v, u) ∈  E 

∨  (u, v) ∈  E}([23] as cited in [25]). A node with high degree 

centrality is a well-connected node and can potentially directly 

influence many other nodes [26]. The total degree centrality is 

measured for the |O| x |O| 1-mode social network and the nodes 

(organisations) are ranked in descending order. The most highly 

valued are those organisations that are affected by the same 

indicators as many other organisations.  
 

 

Fig. 5 |I| x |I| 1-mode social network 

 

Following, the m-slices are identified. An m-slice is a 

maximal subnetwork that contains those links with a 

multiplicity greater than or equal to m and the nodes incident 

with these links [27]. This allows the identification of groups of 

organisations based on the multiplicity of common indicators 

they are affected by; the higher the m-slice value, the higher the 

multitude of common indicators affecting the group of 

organisations. 

The fact that a group of organisations is affected by the same 

indicators is an indication that the same infrastructure (as 

defined in the DM) is being used against them, resulting in that 

they belong to a shared threat space [5]. This information 

enables them to better prioritise their resources and focus their 

efforts [28] while sharing CTI with those that are possible to be 

impacted by a similar adversary is more productive and cost-

efficient. Applying the infrastructure-centred approach of the 

DM enables the discovery of more related indicators thus 

enabling the identification of more victims, additional 

infrastructure and adversary information. For example, suppose 

that org1 is affected by five IP addresses and org2 has so far been 

affected by only two of them, likely, it will also be affected by 

the remaining three as both organisations belong to the same 

threat space and the same infrastructure is used against them. 

Next, the total degree centrality is measured for the |I| x |I| 1-

mode social network and the nodes (indicators) are ranked in 

descending order. The more highly ranked are those indicators 

that affect many common organisations, and thus they should 

be prioritised for incident response. The m-slices allow for the 

identification of groups of indicators that affect many common 

organisations. An indicator or a group of indicators that is 

affecting multiple common organisations should be treated with 

priority throughout the process of incident response [28]. For 

example, a domain name that has been reported by many 

organisations should be prioritised in incident response. On the 

other hand, a domain name that has affected only a few, or just 

one organisation, may be a sign of a targeted attack against 

those specific organisations. 



 

IV. CASE STUDY 

The case study uses data stored on a production MISP 

instance of the CIRCL [6]. The data were accessed using the 

MISP REST API and the PyMISP Python library [29], [30]. The 

construction and analysis of the social networks were 

performed using the ORA-LITE version 3.0.9.9.87, a software 

tool developed by CASOS at Carnegie Mellon University for 

the dynamic assessment and analysis of meta-networks [31]. 

The attribute values describing the MISP events are the 

indicators that affect each organisation and the organisation 

creating an event is considered to be affected by it, since it 

detected and reported it. In this study, the selected indicators 

were the event attribute types that contain IP addresses. The 

proposed methodology and SNA software impose no limitation 

in considering more and different types, such as autonomous 

systems, bank accounts, cookies and more (listed in [32]). 
 

 

Fig. 6 Case study |O| x |I| affiliation network 

 

According to CIRCL policy, the data used for this cases study 

are not allowed to be published and thus were anonymised. 

Each IP address was replaced by an ‘IP’ label and each 

organisation by an ‘ORG’ label. For the construction of the |O| 

x |I| affiliation network, 6 organisations and the 1,999 IP 

addresses affecting them were selected, resulting in the 

formation of 2,162 links among them. The resulting social 

network is visualised in Fig. 6 where the organisations are 

represented by blue squares and the IP addresses by red dots; 

the node labels have been omitted for readability. An 

organisation reporting an IP address is assumed to be affected 

by this IP address and a link is formed between that organisation 

and the IP address. 

Having constructed the affiliation network the proposed 

methodology continues folding the |O| x |I| social network to 

result in: the |O| x |O| 1-mode, valued social network and; the |I| 

x |I| 1-mode, valued social network. 

In the |O| x |O| social network visualised in Fig. 7, two 

organisations are linked when they are affected by the same IP 

address (indicator); the link value shows how many common IP 

addresses are affecting them. The resulting 1-mode network is 

composed of six nodes (organisations) and 10 links. The total 

degree centrality of each node in the |O| x |O| 1-mode, valued 

social network is measured and the nodes are ranked based on 

their value in descending order, Table I. Nodes ORG-1 and 

ORG-2 are the highest-ranked ones, with the former sharing 

163 IP addresses with other organisations and the latter sharing 

150. These organisations could play a central role in sharing 

threat intelligence and, they should be prioritised during a 

collaborative response due to the large number of indicators 

affecting them. In Fig. 7, the formation of m-slices is easily 

identified. ORG-1 and ORG-2 are affected by the same 141 IP 

addresses forming a 141-slice, while ORG-1, ORG-3 and ORG-

2 form a 10-slice since they are affected by 10 or more common 

IP addresses. The fact that these groups of organisations are 

targeted by the same IP addresses is an indication that the same 

infrastructure (as defined in the DM) is leveraged against them, 

thus they belong to the same shared threat space. These 

organisations could share CTI to allow them to prepare against 

and mitigate threats faster and more efficiently. Their resources 

can also be better prioritised as the IP addresses used against 

ORG-1 could be also used against ORG-3 and ORG-2. 

Preparation against and detection of these IP addresses 

(indicators) would result in a more effective incident response 

and could also reveal new victims (e.g., systems 

communicating with these IP addresses). 
 

 

Fig. 7 Case study |O|x |O| 1-mode social network 
 

TABLE I 
ORGANISATIONS' TOTAL DEGREE CENTRALITY RANKING 

Rank Organisation Scaled Unscaled 

1 ORG-1 0.231 163 

2 ORG-2 0.213 150 

3 ORG-3 0.024 17 

4 ORG-4 0.013 9 

5 ORG-5 0.010 7 

6 ORG-6 0.006 4 

 

The proposed methodology continues with the analysis of the 

|I| x |I| 1-mode valued social network visualised in Fig. 8, where 



 

 

two IP addresses (indicators) are linked when they affect the 

same organisation; only links valued 3 are depicted for 

readability. The resulting 1-mode network is composed of 

1,999 nodes (IP addresses) and 1,997,001 links among them. 

The total degree centrality is measured and the nodes (IP 

addresses) are sorted in descending order. A sample list of the 

nodes’ measurements is listed in Table II showing their ranking 

and values. These nodes are highly valued since they are the 10 

highest ranking among the 1,999 nodes. They should be 

handled with priority during the incident response phases as 

they all affect multiple common organisations. Using the m-

slices measurement a group of 6 IP addresses is identified (IP-

1, IP-2, IP-3, IP-4, IP-11, IP-12) affecting organisations with a 

multiplicity of three, forming a 3-slice. These groups of IP 

addresses (indicators) should be prioritised in incident 

response. They could be blocked or blacklisted in a network 

security solution, detection signatures could be created for 

network or host detection and, of course, they could be shared 

using a CTI platform as part of a threat information or threat 

intelligence platform. 

The workings of the proposed methodology were 

demonstrated using a small number of organisations and 

indicators to ensure the readability of the visualisations, though 

the SNA software tools can easily handle measurements and 

visualisations on thousands of nodes and links. 
 

TABLE II 

SAMPLE IP ADDRESSES TOTAL DEGREE CENTRALITY RANKING 

Rank IP address Scaled Unscaled 

1 IP-1 0.359 2,149 

2 IP-2 0.358 2,147 

3 IP-3 0.358 2,147 

4 IP-4 0.358 2,147 

5 IP-5 0.358 2,144 

6 IP-6 0.358 2,144 

7 IP-7 0.357 2,139 

8 IP-8 0.357 2,139 

9 IP-9 0.357 2,138 

10 IP-10 0.357 2,138 

 

 

Fig. 8 Case study |I| x |I| 1-mode social network 

V. CONCLUSIONS AND FUTURE WORK 

The problem that was dealt with in this work is the 

production of CTI using the data that are commonly stored in 

software solutions such as the MISP platform. Concepts and 

techniques available in the discipline of SNA are combined 

with the DM, a model used for intrusion analysis and the 

production of CTI. The result and contribution of this work is 

the proposal of methodology that models the MISP threat data 

as a social network, applies relevant SNA analysis techniques 

and leverages the DM model to identify groups of victims that 

are targeted by the same infrastructure such as IP addresses. 

This enables the victims to allocate their resources in a cost-

efficient manner, establish CTI-sharing relationships and 

prioritise and focus their incident response process and 

capabilities. 

The workings of the methodology were demonstrated with a 

case study using the anonymised threat data stored on a 

production MISP instance. During the case study, the 

importance of threat data semantics was identified. The fact that 

multiple organisations are creating events in a MISP instance 

can result in different semantics being used to describe similar 

security incidents. For example, an organisation might use 

MD5 hashes for malware samples, while another might use 

SHA256 hashes for the same purpose. In this case, even though 

both organisations are affected and report the same malware, 

the link between them is not established. 

The proposed methodology is not limited to the MISP 

platform, it can be applied to any CTI-sharing solution as long 

as the data can be modelled as a social network. Leveraging the 

features and capabilities of SNA software facilitates the 

application of analysis techniques on these networks, producing 

measurements and visualisations. Future work could focus on 

the automation of the methodology, development of a software 

tool and development of a MISP module that could perform the 

task. The methodology could be also enhanced by researching 

more analytic pivoting approaches available in [5]: the victim-

centred; the capability-centred; the adversary-centred; the 

social-political centred; and the technology-centred.  
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