
141

ERS0: Enhancing Military 
Cybersecurity with AI-Driven 
SBOM for Firmware Vulnerability 
Detection and Asset Management

Abstract: Firmware vulnerability detection and asset management through a software 
bill of material (SBOM) approach is integral to defensive military operations. SBOMs 
provide a comprehensive list of software components, enabling military organizations 
to identify vulnerabilities within critical systems, including those controlling various 
functions in military platforms, as well as in operational technologies and Internet 
of Things devices. This proactive approach is essential for supply chain security, 
ensuring that software components are sourced from trusted suppliers and have not 
been tampered with during production, distribution, or through updates. It is a key 
element of defense strategies, allowing for rapid assessment, response, and mitigation 
of vulnerabilities, ultimately safeguarding military capabilities and information from 
cyber threats.

In this paper, we propose ERS0, an SBOM system, driven by artificial intelligence 
(AI), for detecting firmware vulnerabilities and managing firmware assets. We harness 

CyCon 2024: Over the Horizon
16th International Conference on Cyber Conflict
C. Kwan, L. Lindström, D. Giovannelli, K. Podiņš, D. Štrucl (Eds.)
2024 © NATO CCDCOE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal 
use within NATO and for personal or educational use when for non-profit or 
non-commercial purposes is granted provided that copies bear this notice 
and a full citation on the first page. Any other reproduction or transmission 
requires prior written permission by NATO CCDCOE.

Max Beninger
Research Assistant
School of Computing
Queen’s University
Kingston, ON, Canada
max.beninger@queensu.ca

Steven H. H. Ding
Assistant Professor
School of Information Studies
McGill University
Montreal, QC, Canada
steven.h.ding@mcgill.ca

Philippe Charland
Defence Scientist
Mission Critical Cyber Security Section
Defence Research and Development 
Canada
Quebec, QC, Canada
philippe.charland@drdc-rddc.gc.ca

Benjamin C. M. Fung
Professor
School of Information Studies
McGill University
Montreal, QC, Canada
ben.fung@mcgill.ca



142

1. INTRODUCTION

The implementation of a software bill of materials (SBOM) practice in military 
operations is becoming increasingly critical, particularly in the context of supply 
chain security, asset management, and vulnerability management [1], [2]. Military 
operations typically rely on a complex network of platforms, operational technologies, 
and their software components that are often sourced from a myriad of suppliers, each 
with varying levels of trust and transparency. The complex nature of modern supply 
chains in software procurement and deployment inherently assumes a high level of 
trust in all participating suppliers. This trust-based approach, however, exposes these 
supply chains, particularly open-source software (OSS), to significant risks of supply 
chain attacks [3]. Such attacks can occur when a malicious actor infiltrates the supply 
chain at any point, potentially compromising the integrity and security of the software 
components being distributed or the pipelines through which the components are 
produced and integrated. This systematic weakness is especially concerning in 
environments where software plays a critical role in operational functionality and 
security, such as in military operations.

An SBOM serves as a strategic tool to mitigate these risks by introducing an element 
of transparency into the supply chain. By providing a comprehensive and detailed 
list of all software components used in a system, including their origins, versions, 
and dependencies, an SBOM makes it possible to scrutinize and validate each 
component’s security and integrity. This level of transparency is crucial in identifying 
and addressing vulnerabilities that might otherwise go unnoticed in the complex 

the power of pre-trained large-scale language models to effectively address a wide 
array of string patterns, extending our coverage to thousands of third-party library 
patterns. Furthermore, we employ AI-powered code clone search models, enabling 
a more granular and precise search for vulnerabilities at the binary level, reducing 
our dependence on string analysis only. Additionally, our AI models extract high-
level behavioral functionalities in firmware, such as communication and encryption, 
allowing us to quantitatively define the behavioral scope of firmware. In preliminary 
comparative assessments against open-source alternatives, our solution has 
demonstrated better SBOM coverage, accuracy in vulnerability identification, and a 
wider array of features.

Keywords: vulnerability detection, firmware analysis, firmware management, 
artificial intelligence



143

web of supply chain relationships. As a proactive approach, an SBOM is particularly 
valuable in preventing supply chain attacks, as it allows for the early detection of any 
anomalies or unauthorized alterations in the software components.

Obtaining a reliable SBOM is challenging, as relying on suppliers to provide this 
crucial information reintroduces the very trust issues SBOMs are meant to mitigate. 
Expecting suppliers to disclose the complete source code for all released firmware 
is also unrealistic, not only due to proprietary concerns but because the pipeline 
that transforms source code into final firmware can itself be compromised within 
the supply chain. Consequently, a shift-right approach is necessary, predicated on 
a zero-trust assumption toward suppliers. This approach seeks the development of 
specialized tools capable of directly extracting SBOMs from the already released 
or deployed firmware and software components. Such tools would independently 
analyze and generate a comprehensive list of components, bypassing the need to rely 
on supplier-provided information and ensuring a more accurate and secure assessment 
of the software’s composition and potential vulnerabilities.

Existing solutions for SBOM generation primarily depend on manual processes, 
where specific string-matching patterns are crafted. These patterns are designed to 
detect various versions of strings linked to a particular product or open-source project. 
An example of this can be seen in Figure 1, which displays manually created regular 
expressions aimed at identifying different versions of the Dropbear library. This 
manual process is not only labor-intensive but also demands expertise in firmware 
analysis, given the extensive range of pattern variants necessary for effective 
matching. As a result, existing state-of-the-art solutions, such as the Firmware 
Analysis and Comparison Tool (FACT) [4] and the Common Vulnerabilities and 
Exposures (CVE) Binary Tool [5], are limited in their scope, only able to identify a 
few hundred specific products and components. This limitation underscores the need 
for more advanced and automated methods in SBOM generation. Moreover, these 
solutions often overlook code-level patterns, which are crucial as they contain the 
actual vulnerabilities. The failure to capture these patterns represents a significant 
gap in the effectiveness and thoroughness of current SBOM generation methods. 
Another inadequately addressed aspect is the characterization of firmware’s high-
level capabilities, such as encryption, communication, and I/O operations. These 
capabilities are crucial for military operations, as they define the operational scope, 
the potential attack vectors, the presence of a possible backdoor, and the integrity of 
the firmware overall. Therefore, there is a pressing need for a solution that not only 
identifies the components of an SBOM but also comprehensively understands and 
delineates the high-level functionalities and potential capabilities of the firmware.



144

FIGURE 1: EXAMPLES OF MANUALLY CREATED RULES FOR VERSION STRING MATCHING IN 
TWO DIFFERENT SBOMS TOOLS

To address these challenges, we propose a novel system, ERS0, that leverages machine 
learning to scale up and expand the SBOM creation process. Our methodology includes 
two key components: (1) character-level string similarity learning for precise version 
string and product detection, and (2) cross-architecture code clone search for OSS 
library and version identification. This approach considerably broadens the scope and 
accuracy of SBOM analysis. Furthermore, we aim to detect high-level capabilities 
over firmware images using static analysis. We have developed a generative large 
language model (LLM) that is up-trained to create capability identification rules based 
on the ATT&CK behavior catalog [6]. ERS0 not only enhances the accuracy of SBOM 
identification but also provides a comprehensive understanding of the firmware’s 
functionalities and potential vulnerabilities, thereby substantially contributing to the 
security and robustness of military operations. Our contributions can be summarized 
as follows:

• We propose a learning-based version string-matching approach to address 
the scalability of the original manual process. Our proposed system, ERS0, 
is capable of accommodating over 1.4 million variant packages across a 
diverse range of products.

• We propose an efficient SBOM generation method based on cross-
architecture assembly code clone search. This technique specifically targets 
the previously unaddressed gap in code-level analysis.

• We develop a generative LLM designed to create rules that effectively 
match string and code patterns correlated with the high-level behavioral 
capabilities of firmware.

This paper is organized as follows. Section 2 discusses the related tools in this domain. 
Section 3 describes the overall workflow of the ERS0 system and elaborates on each 
individual component. Section 4 demonstrates the effectiveness of our system, and 
Section 5 presents its interface. Finally, Section 6 concludes this paper.



145

2. RELATED WORKS

SBOM is becoming increasingly important for software security, especially for 
identifying components in software packages. SBOM generation is a relatively new 
area of research. Tools such as FACT, the CVE Binary Tool, and EMBArk are well 
known in this domain, but they have some scalability drawbacks. FACT helps to break 
down and examine firmware, which is important for generating SBOMs for embedded 
systems and Internet of Things devices. FACT is good at automatically finding and 
analyzing parts of firmware, helping to list all software parts needed for an SBOM. 
However, it requires manually created rules to identify these parts, which makes it less 
effective when there is a variety of different products. As more products with different 
types of firmware come out, updating these rules by hand can lead to missing or old 
information in SBOMs.

The CVE Binary Tool [5] scans software to find known vulnerabilities, adding to the 
SBOM by identifying potential security issues in the software components. It looks at 
software for versions that have known problems, which helps SBOMs show possible 
security risks. But, like FACT, the CVE Binary Tool also depends on rules that need 
to be manually generated. Keeping these rules up to date is labor-intensive, especially 
when software changes quickly and comes in many forms. This makes it hard for the 
tool to keep up and cover a wide range of software components accurately.

EMBArk [7] focuses on firmware security and is important for making SBOMs for 
embedded systems. It does a good job of automatically analyzing firmware and giving 
detailed information needed for SBOMs. But EMBArk also has the same problem 
as the other tools: It requires manually made rules to find parts and security issues. 
Writing these rules takes a lot of work and does not keep pace with the fast changes 
in software and the many different products available. This makes it less useful for 
generating SBOMs for a large number of products.

In short, while these tools are helpful for producing SBOMs and analyzing software 
security, their need for manually made rules makes it hard to use them for a wide 
range of products. This is a serious problem, because software is always changing 
and there are so many different types of software products available. We need ways 
to make and update SBOMs that are faster and can handle many different products at 
once.



146

3. SYSTEM DESIGN

The automated SBOM generation process in ERS0 is a general workflow that starts 
with a firmware image and results in a thorough SBOM, complete with security 
vulnerability assessments and behavior analysis. This detailed process integrates the 
use of an open-source unpacking tool, machine learning models, and both predefined 
and dynamically generated rules to produce an SBOM that is informative not only 
in terms of component listing but also in terms of security analysis. The workflow, 
shown in Figure 2, is as follows:

• Unpacking, extraction, and disassembly (Steps 1–4): The analysis begins 
with a firmware image that will be scrutinized for its software contents. 
Utilizing unblob [8], an open-source tool that supports many image formats, 
the firmware is unpacked to isolate binary and resource files. After this, the 
extraction utility identifies valid strings from the binaries, which can be 
indicative of component names, versions, and other key metadata. Next, a 
disassembler abstraction module, compatible with both the Ghidra [9] and 
IDA Pro [10] disassemblers, converts the machine code of binary files into 
assembly code, which can be analyzed for richer insights.

• String embedding and string-to-product search (Steps 5–6): A machine 
learning model that transforms strings into an embedding space to identify 
their features and relationships to version strings, aiding in the identification 
of software components. An embedding space is a high-dimensional vector 
space where strings are represented as points or vectors. This representation 
facilitates the comparison of strings by measuring distances or angles 
between them, allowing for the identification of similar products based 
on their proximity in the space. Next, this module compares the resulting 
string embeddings to known product name embeddings to identify potential 
matches in software components.

• Code embedding and code-to-product search (Steps 7–8): Like the string 
model, this model transforms segments of assembly code into an embedding 
space to detect patterns and features that correspond to known software code 
components. The model is trained to match semantically similar assembly 
code across different platforms. This step involves comparing code 
embeddings with known product code embeddings to identify components 
within the firmware.

• SBOM and CVE records matching (Steps 9–10): All identified 
components, along with their versions and interrelations, are compiled into 
an SBOM. With the SBOM, ERS0 conducts a review of CVE records to 
determine if any of the identified components are associated with known 
vulnerabilities.



147

• CAPA rules and generated CAPA rules (Steps 11–13): ERS0 integrates 
the CAPA engine [11]. It is a part of the analysis system that applies 
predefined and dynamically generated rules to evaluate the capabilities and 
behaviors of software based on its code and metadata. It uses these rules to 
detect patterns that could signify potential security threats, vulnerabilities, 
or malicious activities within the software being analyzed. ERS0 uses 
predefined, manually created rules within the CAPA engine to abstract 
software capabilities from observed behaviors for threat analysis. In addition 
to the predefined rules, supplementary CAPA rules are generated by our 
language model to enhance the behavioral analysis.

• ATT&CK behavior catalog (Step 14): The system catalogs the identified 
behaviors according to the MITRE ATT&CK® framework [6], which serves 
as a global knowledge base of adversary tactics and techniques. More details 
are provided in Section 2.C.

Overall, the automated SBOM generation workflow facilitates not only the 
identification and documentation of software components but also the assessment of 
their security risks, thereby offering a robust tool for software component transparency 
and risk management.

FIGURE 2: OVERALL WORKFLOW OF ERS0 SYSTEM FOR FIRMWARE SBOM AND CAPABILITY 
ANALYSIS

A. Similarity Learning for Version String Matching
Instead of employing manual rule creation, we propose the use of a machine learning 
model to efficiently capture string patterns associated with various products on a large 



148

scale. This machine-learning model is designed to convert a given input string into a 
numeric vector embedded within a high-dimensional space. Specifically, the model 
aims to ensure that the vector representation of a version string closely aligns, in terms 
of angular similarity, with its corresponding product name. Conversely, an invalid 
version string or one belonging to a different product should exhibit dissimilarity with 
the product name in this embedded space. By adhering to this principle, the model can 
effectively memorize how different variations of version strings should relate to their 
associated product names.

For instance, let us take the product name “pdns” and its valid version string 
“[lua2backend],” which corresponds to the lua2 backend version 4.7.3. Here, the 
model is trained to yield a similarity value of 1, since “[lua2backend]” is a valid 
version string for pdns. However, it should produce a similarity value of 0 when 
presented with the OpenSSL product name. Invalid version strings are those that may 
appear to conform to the standard format of major, minor, and build versions, but do 
not accurately represent the product’s version. For example, the string “IEEE 802.11” 
might seem like a valid version string with “802.11” as its version number. However, it 
pertains to the network communication protocol and should not be treated as an SBOM 
entry. Therefore, it should yield a similarity value of 0 when compared to all product 
names. The model is trained on a dataset that follows this format, comprising over 
4.3 million unique valid version string patterns. The dataset comprises pre-compiled 
Linux libraries, excluding Windows binaries, to test cross-platform generalizability.

The model itself operates as a character-level language model. It accepts a raw string 
as input, applies character-level tokenization, converts the raw string into a sequence 
of characters, and encodes each character into a numeric vector (embedding) using 
multiple layers of transformer models. Specifically, we leverage the CANINE [12] pre-
trained language model as the encoder. Additional details can be found in the original 
paper [12]. This model has been pre-trained on an extensive text corpus, encompassing 
various domains such as news postings, Wikipedia articles, and programming 
questions/answers. Leveraging this pre-trained language model facilitates semantic 
matching between product names and version strings. For example, “libcrypto” is a 
library within the “libssl” package, which is part of the OpenSSL project. The pre-
trained language model, without further fine-tuning, can already establish a high 
degree of similarity between “libcrypto” and both “libssl” and “openssl.”

As shown in Figure 3, the encoder model is up-trained following a Siamese 
architecture. A Siamese network is a type of neural network architecture used for 
learning similarity or dissimilarity between pairs of data points [13]. In our case, the 
goal is to measure the similarity between product names and version strings. Let us 
denote the input product name as P and the input version string as V. These inputs are 



149

converted into numeric vectors using the CANINE pre-trained language model. Let 
f (P) and f (V) be the embeddings (numeric vectors) of P and V, respectively:

f (P) = CANINE(P)
f (V) = CANINE(V)

The cosine similarity between the embeddings f (P) and f (V) is calculated as:

Now, the cosine loss function can be defined as follows:

We want to minimize the cosine similarity between valid pairs (product name and 
its corresponding version string) and maximize the cosine similarity between invalid 
pairs (product name and a version string of a different product). In practice, a label of 
1 is assigned to denote a valid pair of strings, while a label of 0 is used for an invalid 
pair of strings.

During the deployment stage, as shown in Figure 4, the first step involves encoding 
all existing product names into vector representations. These vectors serve as a 
reference database against which incoming strings can be compared. The encoding 
is carried out by the above trained encoder, which transforms raw string data into a 
high-dimensional space where semantically similar terms are placed closer together.

FIGURE 3: A SIMILARITY-BASED MACHINE LEARNING MODEL FOR THE VERSION STRING-TO-
PRODUCT NAME-MATCHING PROBLEM



150

FIGURE 4: MATCHING AND SEARCHING PROCESS DURING THE DEPLOYMENT STAGE

When a new incoming string, which could be a potential version string, is received, 
the same encoder processes it to generate its vector representation. This vector is then 
compared against the pre-encoded vectors of product names, using a cosine similarity 
measure. The process searches for the vector among the pre-encoded product names 
that are most similar to the vector of the incoming string, limited by a predefined 
threshold. If a vector that exceeds this threshold is found, the incoming string is 
considered to be a match for the corresponding product name. This method allows for 
robust string matching, accommodating variations and minor discrepancies that often 
occur in real-world data.

B. Code Clone Search for Library Matching
This module functions in a way that is similar to the string-matching module, but it 
has a different data target. Its primary goal is to compare the assembly code of a given 
binary executable with the code of known product binaries. It utilizes a specifically 
trained model known as Pluvio [14] to identify similarities in assembly code across 
various computer architectures. This model goes beyond the traditional approach 
of matching version strings to product names. Instead, Pluvio is designed to detect 
assembly code that is similar in function and purpose across different types of platforms 
and against variations of the compilation toolchain. For example, a training sample 
involves the task of comparing two versions of a checksum algorithm CRC32 [15], 
one compiled for an ARM processor and the other for an AMD64 processor. The 
model’s training on such examples enables it to recognize functions that have similar 
purposes or behaviors, even though they might be compiled in different ways.In 
the operational workflow, ERS0 first disassembles the binary executable. This task 
is carried out using a selected backend disassembler, as explained in the overall 



151

workflow (referenced in Figure 2). The disassembler’s job is to convert the machine 
code into assembly code, thereby revealing richer semantic information about the 
code’s meaning and structure. Subsequently, the disassembler performs a control flow 
analysis. This analysis is crucial, as it segments the continuous stream of assembly 
code into individual and distinct assembly functions. Each binary executable is 
decomposed into a comprehensive list of assembly functions, making it easier to 
analyze and compare. When a new binary executable is extracted from a firmware, 
ERS0 compares it against a vast repository of known assembly functions from a wide 
range of products, extracted from open-source Linux and Windows packages. This 
repository is extensive and includes a diverse array of functions, providing a robust 
basis for comparison. By comparing the new executable to this repository, ERS0 can 
effectively identify any similarities or matches.

In the code matching algorithm (Algorithm 1), the process begins with Step 1, 
where the target binary is inputted as the subject of the search and analysis. Step 2 
involves extracting all the assembly functions from the target binary, which requires 
disassembling the binary to understand its low-level code structure. In Step 3, each 
function f extracted from the target binary is iterated through for individual analysis. 
Step 4 uses the Pluvio model to search for clones of each function f in a comprehensive 
repository; these clones are variants of the function found in different binaries, and the 
search focuses on matches that meet a specified similarity threshold. Step 5 involves 
counting the origin of every clone identified in the previous step, thereby increasing 
a counter corresponding to its source binary or library; this step is crucial for tracking 
which binaries or libraries have functions most similar to those in the target binary. 
Step 6 involves selecting the top 10 binaries or libraries with the highest clone 
count, representing the binaries/libraries whose functions most frequently matched 
with those in the target binary. Finally, Step 7 refines this process by searching each 
function f from the target binary again, but only within the top 10 previously identified 
binaries/libraries, to ensure an accurate clone count. In Step 8, the algorithm checks 
the clone count threshold and picks the highest matched source binary or library, thus 
concluding the binary analysis and identification process.



152

C. Generative AI for Behavior Rule Generation
The final phase of the ERS0 project focuses on the development of behavior-matching 
rules. The objective is to leverage a large pre-trained natural language model, such as 
ChatGPT or Llama2, for generating YARA rules. YARA rules are essentially patterns 
or sets of conditions used to identify and classify binary executables [16]. Originally, 
YARA rules were used to classify and label malware, but their applications have since 
been extended beyond malware analysis into the domain of general binary analysis 
for threat hunting. CAPA is an open-source project leveraging YARA rules to identify 
high-level capabilities in binary executables. Figure 5 shows an example YARA rule. 
It tries to identify the “ws2_32. select” application programming interface (API) and 
label the binary with the capability to get socket status. The CAPA project and its 
YARA rules are crucial for identifying specific behaviors cataloged in ATT&CK, a 
comprehensive database of techniques employed by malicious entities. The example 
rule also defines the corresponding ATT&CK technique label T1016. T1016 in the 
MITRE ATT&CK framework refers to “System Network Configuration Discovery.” 
This technique is part of the discovery tactic, where attackers seek to gather information 
about your network and systems, which can then be used to guide further actions, such 
as lateral movement through the network or understanding what defenses are in place.



153

FIGURE 5: EXAMPLE YARA RULE FROM THE CAPA OPEN-SOURCE PROJECT TO FIND CAPABILITIES 
PRESENTED IN A BINARY EXECUTABLE

However, the rule creation process relies on manual effort, requiring a security analyst 
with a strong background in understanding ATT&CK techniques, as well as strong 
familiarity with both low- and high-level programming APIs and libraries across 
many platforms. This poses a significant challenge, as the rule generation process 
must be scaled up to cover all ATT&CK techniques. We employ Retrieval Augmented 
Generation (RAG) prompt engineering to facilitate the rule creation process.

RAG combines language models with a retrieval system to generate text using external 
information [17]. After starting a prompt conversation, it first retrieves relevant 
information about the query to enrich the conversation context and then proceeds 
to the subsequent tasks provided in the prompt conversation. ERS0 uses the Atomic 
Red Team project [18] on GitHub as the external knowledge base. It contains both 
the technical description of each ATT&CK technique and several implementations 
of example attacks. This RAG design allows AI to provide up-to-date and domain-
specific information dynamically. For each ATT&CK technique, ERS0 starts a prompt 
conversation with eight steps to create a YARA rule:

• Step 1: Data provision. In this step, the entire ATT&CK catalog, including 
technique descriptions and attack examples, is inputted into the language 
model from the Atomic Red Team project. This comprehensive data ensures 
that the model has a deep understanding of various attack techniques. This 
understanding is critical for accurate and effective rule generation.



154

• Step 2: Technique identification. This step involves requesting the model 
to provide a detailed description for a given ATT&CK technique ID. By 
understanding the specifics of the given technique, the model can tailor 
the generated rule to precisely match the behavior associated with that 
technique.

• Step 3: Similarity analysis. Here, the model is tasked with finding and 
listing the top five techniques most similar to a given ID based on their 
descriptions. This analysis helps enrich the context of the technique being 
targeted for rule generation and improves the accuracy of the rule being 
generated.

• Step 4: System call identification. This step instructs the model to identify 
typical Windows and Linux system calls that are related to the technique 
under consideration. Recognizing and incorporating relevant system calls is 
essential for pinpointing specific behaviors that need to be addressed by the 
rule.

• Step 5: Advanced command analysis. Advanced analysis involves having 
the model identify less common and undocumented Windows kernel 
APIs [19], if applicable, linked to the technique. These obscure APIs are 
often exploited in sophisticated attacks and including them in the rule 
ensures that such tactics are not overlooked.

• Step 6: Cross-platform analysis. Extending the analysis to include 
identifying relevant MacOS, Java, and Python APIs for the technique ensures 
that the generated rule is comprehensive and effective across different 
operating systems. This step broadens the scope of rule applicability.

• Step 7: Constant value identification. In this step, the model is asked to 
identify all potential constant values, such as hexadecimal numbers, floating-
point numbers, decimal numbers, or string values, used by each of the 
APIs identified above. Constants often serve as key indicators in malicious 
operations, making their identification crucial for rule accuracy.

• Step 8: YARA rule generation. Finally, based on the information gathered 
in previous steps, the model is instructed to generate a YARA rule specifically 
tailored to detect the behavior associated with the targeted technique. This 
rule serves as a practical tool for identifying the presence of a specific 
malicious technique within a system.

By automating these steps, ERS0 overcomes the challenges of manual rule creation, 
enabling the generation of comprehensive and effective detection rules at a much 
larger scale. This method is not only efficient but also ensures that the rules are up-to-
date and relevant across various systems.



155

4. EXPERIMENTAL EVALUATION OF SBOM MATCHING

We developed a benchmark dataset for SBOM generation, essential for firmware 
analysis to evaluate a tool’s coverage of libraries and potential vulnerabilities. We 
assessed the performance of three tools: FACT, EMBArk, and the CVE Binary 
Tool, each in conjunction with ERS0. Our dataset was compiled by aggregating all 
packages from two sources: the Debian package repository for Linux pre-compiled 
packages and the Conan open-source package repository for MS Windows dynamic-
link libraries (DLLs). This resulted in a total of 395,933 packages and 1,583,732 
binary executables, each annotated with product and version information.

For our evaluation, we tested each tool individually along with ERS0. This approach 
was chosen because ERS0 is designed to be compatible with all the packages in our 
dataset, whereas each of the other tools has varying levels of support for different 
packages. We specifically assessed a tool on a package only if it had a predefined rule 
that corresponds to that package.

The results depicted in Table I provide a comparative analysis of three tools—FACT, 
EMBArk, and the CVE Binary Tool—in their performance of matching binaries to 
applicable packages, alongside the performance of ERS0. We assess tools based on 
their accuracy in matching binary executables, such as libcrypto.dll, to their correct 
vendor (e.g., OpenSSL) and version (e.g., 1.1.1). A correct match scores 1.

TABLE I: EXPERIMENTATION RESULTS

FACT had a total of 42,838 applicable packages with 54,394 binaries. Of these, FACT 
matched 129 binaries, while ERS0 identified significantly more, with 45,690 matches. 
EMBArk, with 78,854 applicable packages and 218,433 binaries, matched 1,075 
binaries. ERS0 again showed a higher matching count with 163,824 binaries. The 
CVE Binary Tool had the highest number of applicable packages at 102,571 and the 
highest number of applicable binaries at 305,558, with the tool itself matching 46,495 

FACT EMBArk CVE Binary Tool

Total number of applicable packages 42,838 78,854 102,571

Total number of applicable binaries 54,394 218,433 305,558

Number of binaries matched by the tool 129 1,075 46,495

Number of binaries matched by ERS0 and match 
percentage of Code-To-Product method

45,690 
(14.3%)

163,824 
(24.5%)

269,432
(16.1%)



156

binaries. In this case as well, ERS0 demonstrated a more extensive matching capability, 
identifying 269,432 binaries. The effectiveness of code-to-product matching depends 
on the disassembler’s performance and availability, but this limitation is mitigated by 
the string-to-product matching feature.

These results suggest that while each tool has its own capacity to match binaries, 
ERS0 shows a more robust performance in identifying binary matches across all 
tools. The high number of matches by ERS0 could indicate its higher matching 
coverage capability. However, the lower match counts for the individual tools do not 
necessarily imply poor performance; they may be highly specialized or conservative 
in their matching to ensure high accuracy. It is also important to consider the context 
and specific use cases in which one tool might perform better than the others despite 
the lower numbers, such as in scenarios requiring specific package support or higher 
precision.

5. SYSTEM INTERFACE

ERS0 organizes firmware images based on the concept of a repository. A repository, 
in this context, embodies a collection of firmware images earmarked for management 
and analysis. It is essential to note that each repository functions independently 
from the others. These repositories are exclusively owned by the current users and 
upcoming features will enable access sharing.

The repository dashboard, shown in Figure 6, provides a high-level view of the 
security analysis within a repository of firmware images. Key metrics here include 
the number of binaries extracted (21,835), instances of CVE vulnerabilities (4,697), 
and the prevalence of high-severity vulnerabilities (48% of the total). The dashboard 
highlights the average severity score of CVEs (6.94), an increase in average severity 
score (+2.45% compared to some baseline), and the criticality of vulnerabilities, with 
129 identified as critical severity (3% of the total). It also offers historical context with 
a line graph showing the average age of CVEs spanning over five years, suggesting 
how quickly vulnerabilities are being identified and potentially addressed. An analysis 
of behavior categories indicates a focus on root-level actions, while the ATT&CK 
tactics charts categorize observed behaviors and their sources, which are critical for 
understanding attack patterns and planning defenses.



157

FIGURE 6: ERS0 REPOSITORY DASHBOARD

Given a firmware image in the repository, the user can open its corresponding latest 
SBOM analysis report, as illustrated in Figure 7. The SBOM and vulnerability report 
provide an in-depth analysis of the vulnerabilities present in the system’s software 
components. The CVE score percentile graphs illustrate the distribution of vulnerability 
severities over time, with an average yearly score of 7.10, pointing to the presence of 
significant security risks. The CVE severity pie chart reflects this by showing that high/
critical vulnerabilities constitute a substantial portion (50 out of 83 total instances). 
The report lists several specific CVE entries, such as a critical vulnerability in the 
“BoM point-to-point_protocol_project” and a high vulnerability in “BoM lua.” These 
entries are categorized by severity and offer actionable intelligence for prioritizing 
patches and remediation efforts. The data suggests a need to continuously monitor and 
update software components to mitigate these identified vulnerabilities effectively.



158

FIGURE 7: ERS0 ANALYTIC REPORT

The capability report delves into the specific functions and potential risks associated 
with files within the system. It categorizes behaviors into areas such as data 
manipulation, communication, and host interaction, with data manipulation being 
the most prevalent, averaging 0.10 instances per sample. This is exemplified by 35 



159

files having data manipulation/encoding capabilities, with 27 of these using XOR 
encoding—a common technique for obfuscating data to evade detection. The file 
named “signify” is specifically identified as employing this technique, aligning with 
the Malware Behavior Catalog’s [20] Defense Evasion category and the ATT&CK 
framework’s T1027 indicator for obfuscated files or information. Such insights 
are crucial for identifying files that may pose a security risk using sophisticated 
obfuscation or evasion methods.

6. CONCLUSION

ERS0 offers an effective enhancement to firmware security and asset management 
processes. By integrating AI and large-scale language models, it provides an improved 
method for constructing SBOMs that can scale to accommodate a wide variety of string 
patterns and library signatures. The preliminary results suggest that ERS0 may offer 
more thorough SBOM coverage and a more accurate identification of vulnerabilities, 
while also bringing a broader set of features to the table. Its performance, when 
compared with open-source alternatives, indicates that it has the potential to support 
military operations with a scalable and efficient tool for managing firmware assets and 
securing the supply chain. Moving forward, ERS0 could play a supportive role in the 
continuous improvement of cyber defenses, catering to the evolving needs of military 
technology and infrastructure.

REFERENCES

[1] L. J. Camp and V. Andalibi, “SBoM vulnerability assessment & corresponding requirements,” (response to 
Notice and Request for Comments on Software Bill of Materials Elements and Considerations), National 
Telecommunications and Information Administration, 2021. 

[2] S. Cho, E. Orye, G. Visky, and V. Prates, Cybersecurity Considerations in Autonomous Ships. Tallinn: 
CCDCOE, 2022.

[3] E. D. Wolff, K. M. Growley, M. O. Lerner, M. B. Welling, M. G. Gruden, and J. Canter, “Navigating the 
SolarWinds supply chain attack,” The Procurement Lawyer, vol. 56, no. 2, 2021.

[4] Fraunhofer FKIE. “fkie-cad/FACT_core: Firmware analysis and comparison tool.” GitHub.com. Accessed: 
Mar. 12, 2024. [Online]. Available: https://github.com/fkie-cad/FACT_core

[5] Intel. “intel/cve-bin-tool: The CVE binary tool.” GitHub.com. Accessed: Mar. 12, 2024. [Online]. 
Available: https://github.com/intel/cve-bin-tool

[6] “MITRE ATT&CK®.” MITRE. Accessed: Mar. 12, 2024. [Online]. Available: https://attack.mitre.org/
[7] E-M-B-A. “e-m-b-a/embark: EMBArk—The firmware security scanning environment.” GitHub.com. 

Accessed: Mar. 12, 2024. [Online]. Available: https://github.com/e-m-b-a/embark
[8] “unblob—extract everything!” Unblob.org. Accessed: Mar. 12, 2024. [Online]. Available: https://unblob.

org/ 
[9] National Security Agency. “Ghidra.” Ghidra-SRE.org. Accessed: Mar. 12, 2024. [Online]. Available: 

https://ghidra-sre.org/
[10] “Hex Rays—State-of-the-art binary code analysis solutions.” Hex-Rays.com. Accessed: Mar. 12, 2024. 

[Online]. Available: https://hex-rays.com/ida-pro/
[11] Mandiant. “Mandiant/capa: The FLARE team’s open-source tool to identify capabilities in executable 

files.” GitHub.com. Accessed: Mar. 12, 2024. [Online]. Available: https://github.com/mandiant/capa



160

[12] J. H. Clark, D. Garrette, I. Turc, and J. Wieting, “CANINE: Pre-training an efficient tokenization-free 
encoder for language representation,” Transactions of the Association for Computational Linguistics, vol. 
10, pp. 73–91, 2022. 

[13] D. Chicco, “Siamese neural networks: An overview,” Artificial Neural Networks, vol. 2190, pp. 73–94, 
2021. 

[14] Z. Fu, S. H. H. Ding, F. Alaca, B. C. M. Fung, and P. Charland, “Pluvio: Assembly clone search for out-
of-domain architectures and libraries through transfer learning and conditional variational information 
bottleneck,” 2023, arXiv:2307.10631.

[15] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” Proceedings of the IRE, vol. 49, no. 1, 
pp. 228–235, 1961. 

[16] VirusTotal. “YARA—The pattern matching Swiss knife for malware researchers.” GitHub.com. Accessed: 
Mar. 12, 2024. [Online]. Available: https://virustotal.github.io/yara/

[17] P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive NLP tasks,” Advances in Neural 
Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[18] Red Canary. “Atomic-red-team: Small and highly portable detection tests based on MITRE’s ATT&CK.” 
GitHub.com. Accessed: Mar. 12, 2024. [Online]. Available: https://github.com/redcanaryco/atomic-red-
team

[19] T. Nowak. “NTAPI undocumented functions.” NTinterlnals.net. Accessed: Mar. 12, 2024. [Online]. 
Available: http://undocumented.ntinternals.net/

[20] MITRE. “Malware behavior catalog (version 3.0).” GitHub.com. Accessed: Apr. 8, 2024. [Online]. 
Available: https://github.com/MBCProject/mbc-markdown




